

No AMRO-2/01-CPR-18-01

1) Codice tipologia del prodotto: \$235JR

Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante:

Da utilizzarsi per strutture saldate, bullonate o rivettate

2) ArcelorMittal Belval & Differdange Site of Rodange 2, rue de l'industrie L-4823 Rodange (G.D. of Luxembourg) Tel: +352 5019 2366 sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratte	eristiche essenzi	ali	Presta	azione	Specifica tecnic armonizzata
	L		EN 10	0056-2	
F				0059	
Tolleranze sulle	UP	N	EN 1	0279	
dimensioni e sulla forma					
	Spessore no	minale (mm)	Valori	(MPa)	
<u> </u>	>	≤	m	in	
		16	23	35	
Limite elastico	16	40	2:	25	
minimo	40	63		15	
· -	63	80		15	
F	80	100		15	
-	100	150		95	
F	150	160		35	
	Spessore no			(MPa)	
H	>	≤	min	max	
Resistenza allo	=3	100	360	510	
snervamento	100	150	350	500	
_	150	160	340	490	
	Spessore nominale (mm)		Valo	ri (%)	EN 10025-1:200
<u> </u>	>	≤	min		
A.U	=3	40	26		
Allungamento	40	63	25		
	63	100	2	4	
	100	150	2	2	
	150	160	2	1	
Resilienza -	Spessore no	minale (mm)	Valo	ri (J)	
Resilieliza	>	≤		in	
		160	27 / :	20°C	
	Spessore no	minale (mm)	Valo	ri (%)	
L	>	≤		ax	
Saldabilità		30		35	
_	30	40		35	
<u> </u>	40	150		38	
	150	160	0,40		
Durabilità	Spessore no			ri (%)	_
(Composizione	>	≤	min	max	_
chimica)		160		C: 0,17-0,20	
				Mn : 1,40	
				P:0,040	
				Cu : 0.55	
				Cu : 0,55 S : 0,040	

No AMRO-2/02-CPR-18-01 1) Codice tipologia del prodotto: S235J0 Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante: Da utilizzarsi per strutture saldate, bullonate o rivettate

> ArcelorMittal Belval & Differdange Site of Rodange 2, rue de l'industrie L-4823 Rodange (G.D. of Luxembourg) Tel: +352 5019 2366 sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratteristiche essenziali		Presta	zione	Specifica tecnic armonizzata	
	L		EN 10056-2		
			EN 10059		
Tolleranze sulle	UP	N	EN 10	279	
dimensioni e sulla _ forma					
	Spessore nor	minale (mm)	Valori ((MPa)	
	>	≤	mir	n	
		16	23	5	
Limite elastico	16	40	225	 5	
minimo	40	63	21:		
-	63	80	21:		
-	80	100	21		\dashv
-	100	150	199		
	150	160	189		
	Spessore nor	minale (mm)	Valori ((MPa)	
	>	≤	min	max	
Resistenza allo	=3	100	360	510	
snervamento	100	150	350	500	
	150	160	340	490	
F					
	Spessore nominale (mm)		Valori	i (%)	EN 10025-1:200
	>	≤	min		
Allungamente	=3	40	26		
Allungamento	40	63	25		
	63	100	24		
	100	150	22		
	150	160	21		
Resilienza -	Spessore nor	minale (mm)	Valori (J)		
incesilieriza	>	≤	mir		
		160	27 / 0)°C	
L	Spessore nor	minale (mm)	Valori	i (%)	
	>	≤	ma		
Saldabilità		30	0,3		
<u> </u>	30	40	0,3		
-	40	150	0,38		
Durahilità	150	160	0,40 Valori (%)		
Durabilità	Spessore nor				_
(Composizione	>	≤	min /	max	
chimica)		160		C: 0,17	
				Mn : 1,40 P : 0,035	
			l (Cu : 0.55	
				Cu : 0,55 S : 0,035	

No AMRO-2/03-CPR-18-01

1) Codice tipologia del prodotto: **\$235J2**Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante:

Da utilizzarsi per strutture saldate, bullonate o rivettate

2) ArcelorMittal Belval & Differdange
Site of Rodange
2, rue de l'industrie
L-4823 Rodange (G.D. of Luxembourg)
Tel: +352 5019 2366
sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della

produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratte	eristiche essenzia	ali	Prestaz	ione	Specifica tecnic armonizzata
	L		EN 100	56-2	
			EN 10		
Tolleranze sulle	UP	N	EN 10		
dimensioni e sulla forma					
	Spessore no	minale (mm)	Valori (MPa)	\dashv
	>	≤	mir	1	
Limite elastico minimo		16	235)	
	16	40	225	<u> </u>	
	40	63	215	-)	
	63	80	215		
	80	100	215		
-	100	150	195		\dashv
	150	160	185		
	Spessore no		Valori (
	>	≤	min	max	
Resistenza allo	=3	100	360	510	
snervamento	100	150	350	500	
	150	160	340	490	
F					
	Spessore nominale (mm)		Valori	(%)	EN 10025-1:200
	>	≤	min		
Allungamente	=3	40	26		
Allungamento	40	63	25		
	63	100	24		
	100	150	22		
	150	160	21		
Resilienza –	Spessore no	minale (mm)	Valori (J)		
_	>	≤	min		
		160	27 / -2	0°C	
_	Spessore no		Valori		
_	>	≤	max		_
Saldabilità	22	30	0,35		_
-	30	40	0,38		
-	40 150	150	0,38		
Durabilità	Spessore noi	160 minale (mm)	0,40 Valori (%)		
<u> </u>					_
(Composizione chimica)	>	≤ 160	N P	max 0:0,17 4n:1,40 0:0,030 cu:0,55	
				5:0,030	

No AMRO-2/04-CPR-18-01

1) Codice tipologia del prodotto: **\$275JR**Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante:

Da utilizzarsi per strutture saldate, bullonate o rivettate

2) ArcelorMittal Belval & Differdange Site of Rodange 2, rue de l'industrie L-4823 Rodange (G.D. of Luxembourg) Tel: +352 5019 2366 sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di

supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratteristiche essenziali		Presta	zione	Specifica tecnic armonizzata	
	L		EN 100	056-2	
			EN 10		
Tolleranze sulle	UPI	V	EN 10)279	
dimensioni e sulla forma					
	Spessore nor	ninale (mm)	Valori ((MPa)	
	>	≤	mi	n	
Limite elastico minimo		16	27	5	
	16	40	26	5	
	40	63	25	5	
	63	80	24	5	
	80	100	23		
<u> </u>	100	150	22	5	
	150	160	21	5	
	Spessore nor	ninale (mm)	Valori ((MPa)	
	>	≤	min	max	
Resistenza allo	=3	100	410	560	
snervamento	100	150	400	540	
	150	160	380	540	
F		+			\dashv
	Spessore nominale (mm)		Valor	i (%)	EN 10025-1:200
	>	≤	min		
Allungamento	=3	40	23		
Allungamento	40	63	22		
	63	100	21		
	100	150	19		
	150	160	18	3	
Resilienza –	Spessore non	ninale (mm)	Valori (J)		
_	>	≤	mi		
		160	27 / 2		_
<u> </u>	Spessore nor		Valor		_
0-11-120	>	≤	ma 0.4		
Saldabilità	30	30 40	0,4 0,4		
-	40	150	0,4		
-	150	160	0,4		
Durabilità	Spessore nor		Valori (%)		
(Composizione	>	≤	min	max	\dashv
chimica)	· · · · · · · · · · · · · · · · · · ·	160		C : 0,21-0,22	
, ,				Mn : 1,50	
				P: 0,040	
				Cu : 0,55	
				S: 0,040	
				N : 0,012	

No AMRO-2/05-CPR-18-01 1) Codice tipologia del prodotto: S275J0 Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante: Da utilizzarsi per strutture saldate, bullonate o rivettate

> ArcelorMittal Belval & Differdange Site of Rodange 2, rue de l'industrie L-4823 Rodange (G.D. of Luxembourg) Tel: +352 5019 2366 sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratte	eristiche essenzi	ali	Prestaz	ione	Specifica tecnic armonizzata
L			EN 100	56-2	
			EN 10		
Tolleranze sulle	UP	N	EN 10	279	
dimensioni e sulla forma					
	Spessore no	minale (mm)	Valori (MPa)	
<u> </u>	>	≤	mir	l	
		16	275	5	
l imite elastico	16	40	265)	
Limite elastico minimo	40	63	255		
· -	63	80	245		
<u> </u>	80	100	235		\dashv
F	100	150	225		\dashv
<u> </u>	150	160	215		\dashv
	Spessore no		Valori (
-	>	≤	min	max	_
Resistenza allo	=3	100	410	560	
snervamento	100	150	400	540	
	150	160	380	540	
F					\Box
	Spessore nominale (mm)		Valori	(%)	EN 10025-1:200
<u> </u>	>	≤	min		
Allummamanta	=3	40	23		
Allungamento	40	63	22		
	63	100	21		
	100	150	19		
	150	160	18		
Resilienza –	Spessore nor	minale (mm)	Valori (J)		
- Comenza	>	≤	min		
		160	27 / 0	°C	
	Spessore no	minale (mm)	Valori	(%)	
_	>	≤	max		
Saldabilità		30	0,40		
_	30	40	0,40		
<u> </u>	40	150	0,42		
	150	160	0,44		_
Durabilità	Spessore nor		Valori		
(Composizione	>	≤	min	max	_
chimica)		160		C: 0,18	
				In : 1,50	
				2 : 0,035 Cu : 0,55	
				5 : 0,035	
				I : 0,012	

No AMRO-2/06-CPR-18-01 1) Codice tipologia del prodotto: S275J2 Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante: Da utilizzarsi per strutture saldate, bullonate o rivettate

> ArcelorMittal Belval & Differdange Site of Rodange 2, rue de l'industrie L-4823 Rodange (G.D. of Luxembourg) Tel: +352 5019 2366 sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratte	eristiche essenzi	ali	Prestaz	zione	Specifica tecnic armonizzata
			EN 10056-2		
		1	EN 10		
Tolleranze sulle	UP	PΝ	EN 10	279	
dimensioni e sulla forma					
	Spessore no	minale (mm)	Valori (MPa)	\dashv
F	>	≤	mir	1	
		16	275	5	
I imite elastico	16	40	265	5	
Limite elastico minimo	40	63	255		
	63	80	245		-
F	80	100	235		\dashv
-	100	150	225		\dashv
-	150	160	215		
	Spessore no		Valori (
F	>	≤	min	max	_
Resistenza allo	=3	100	410	560	
snervamento	100	150	400	540	
	150	160	380	540	
F					
	Spessore nominale (mm)		Valori	(%)	EN 10025-1:200
<u> </u>	>	≤	mir	1	
Allowania	=3	40	23		
Allungamento	40	63	22		
	63	100	21		
	100	150	19		
	150	160	18		
Resilienza –	Spessore no	minale (mm)	Valori (J)		
Nesilieliza	>	≤	mir		
		160	27 / -2	0°C	
	Spessore no	minale (mm)	Valori	(%)	
<u> </u>	>	≤	max		
Saldabilità		30	0,40		
_	30	40	0,40		
<u> </u>	40	150	0,42		
	150	160	0,44		_
Durabilità	Spessore no	minale (mm)	Valori	(%)	
(Composizione	>	≤	min	max	_
chimica)		160	N F	C : 0,18 Mn : 1,50 P : 0,030 Cu : 0,55	
				3:0,030	

No AMRO-2/07-CPR-18-01 1) Codice tipologia del prodotto: S355JR Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante: Da utilizzarsi per strutture saldate, bullonate o rivettate

> ArcelorMittal Belval & Differdange Site of Rodange 2, rue de l'industrie L-4823 Rodange (G.D. of Luxembourg) Tel: +352 5019 2366 sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratte	eristiche essenzia	di	Prestazi	ione	Specifica tecnic armonizzata
	L		EN 1005	56-2	
			EN 100		
Tolleranze sulle	UPI	V	EN 102	279	
dimensioni e sulla forma					
	Spessore non	ninale (mm)	Valori (N	//Pa)	
	>	≤	min		
Limite elastico minimo		16	355		
	16	40	345		
	40	63	335		
	63	80	325		
	80	100	315		
	100	150	295		
	150	160	285		
	Spessore non	ninale (mm)	Valori (N	/IPa)	
	>	≤	min	max	
Resistenza allo	=3	100	470	630	
snervamento	100	150	450	600	
	150	160	450	600	
-		+	+		\dashv
	Spessore nominale (mm)		Valori ((%)	EN 10025-1:200
	>	≤	min		
Allungamento	=3	40	22		
Allungamento	40	63	21		
	63	100	20		
_	100	150	18		
	150	160	17		
Resilienza –	Spessore non	ninale (mm)	Valori (J)		
- Comenza	>	≤	min		
		160	27 / 20	<u>°C</u>	
L	Spessore non		Valori (_
	>	≤	max		
Saldabilità		30	0,45		
-	30	40	0,47		
-	40	150	0,47		<u></u>
Durabilità	150 Spessore non	160	0,49 Valori (%)		\dashv
<u> </u>	1				_
(Composizione	>	≤	min	max	
chimica)		160		: 0,24	
				: 0,55 n : 1,60	
				: 0,040	
				u : 0,55	
			s	: 0,040	
			N	: 0,012	1

No AMRO-2/08-CPR-18-01

1) Codice tipologia del prodotto: \$355J0

Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante:

Da utilizzarsi per strutture saldate, bullonate o rivettate

2) ArcelorMittal Belval & Differdange Site of Rodange 2, rue de l'industrie L-4823 Rodange (G.D. of Luxembourg) Tel: +352 5019 2366 sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratte	eristiche essenzi	ali	Prestaz	ione	Specifica tecnic armonizzata
T	L		EN 100	56-2	
<u> </u>		1	EN 100		
Tolleranze sulle	UF		EN 102		
dimensioni e sulla forma					
	Spessore no	minale (mm)	Valori (I	МРа)	\dashv
	>	≤	min	<u> </u>	
Γ		16	355	;	
Limite elastico	16	40	345	,	
minimo	40	63	335	;	
T	63	80	325	;	
<u> </u>	80	100	315	;	
<u> </u>	100	150	295		
	150	160	285	j	
	Spessore no	minale (mm)	Valori (I	МРа)	
	>	≤	min	max	
Resistenza allo	=3	100	470	630	
snervamento	100	150	450	600	
<u> </u>	150	160	450	600	
_					
	Spessore no	minale (mm)	Valori	(%)	EN 10025-1:200
	>	≤	min		
Allungamento	=3	40	22		
	40	63	21		_
<u> </u>	63	100	20		_
-	100	150	18		_
	150 Spessore no	160	17 Valori	<u>/ I</u>)	\dashv
Resilienza					
-	>	≤ 160	min 27 / 0		_
	Spessore no		Valori (%)		
-		≤	max		-
Saldabilità	>	30	0,45		_
Jaidabilita	30	40	0,47		
<u> </u>	40	150	0,47		
Г	150	160	0,49)	
Durabilità	Spessore no	minale (mm)	Valori (%)		
(Composizione	>	≤	min	max	
chimica)		160	s M	i : 0,20-0,22 i : 0,55 In : 1,60 : : 0,035	
			s	cu : 0,55 : 0,035 I : 0,012	

No AMRO-2/09-CPR-18-01

1) Codice tipologia del prodotto: \$355J2

Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante:

Da utilizzarsi per strutture saldate, bullonate o rivettate

2) ArcelorMittal Belval & Differdange Site of Rodange 2, rue de l'industrie L-4823 Rodange (G.D. of Luxembourg) Tel: +352 5019 2366 sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratte	eristiche essenzi	ali	Prestaz	zione	Specifica tecnic armonizzata
	L	_	EN 100	56-2	
]	EN 10		
Tolleranze sulle	UF	PN	EN 10	279	
dimensioni e sulla forma					
	Spessore no	minale (mm)	Valori (MPa)	\dashv
	>	≤	mir	1	
		16	355	5	
Limite elastico	16	40	345	5	
minimo	40	63	335		
	63	80	325		
 	80	100	315		\dashv
 -	100	150	295		\dashv
<u> </u>	150	200	285		
	Spessore no		Valori (
-	>	≤	min	max	-
Resistenza allo	=3	100	470	630	
snervamento	100	150	450	600	
<u>-</u>	150	200	450	600	
F					
	Spessore nominale (mm)		Valori	(%)	EN 10025-1:200
	>	≤	min		
Allungamenta	=3	40	22		
Allungamento	40	63	21		
	63	100	20		
	100	150	18		
	150	200	17		
Resilienza –	Spessore no	minale (mm)	Valori (J)		
TCSIIIC1124	>	≤	mir		
		200	27 / -2	0°C	
L	Spessore no	minale (mm)	Valori	(%)	
	>	≤	max		
Saldabilità		30	0,4		
	30	40	0,4		
_	40	150	0,4		
	150	200	0,49		
Durabilità	Spessore no	minale (mm)	Valori	(%)	
(Composizione	>	≤	min	max	_
chimica)		200		C: 0,20-0,22	
				Si : 0,55	
				/ln : 1,60	
				Cu : 0,55	
				S: 0,030 P: 0,030	
		I I	Į ^r	. 0,000	1

No AMRO-2/10-CPR-18-01

1) Codice tipologia del prodotto: \$355K2

Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante:

Da utilizzarsi per strutture saldate, bullonate o rivettate

2) ArcelorMittal Belval & Differdange
Site of Rodange
2, rue de l'industrie
L-4823 Rodange (G.D. of Luxembourg)
Tel: +352 5019 2366
sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

eristiche essenzi	ali	Presta	azione	Specifica tecnic armonizzata
L		EN 10	0056-2	
UP	N	EN 1	0279	
Spessore no	minale (mm)	Valori	(MPa)	
>	≤	m	in	
	16	35	55	
16	40	34	45	
				
				
				
•				
>	≤	min	max	
=3		470	630	
100	150	450	600	
		450	600	
				\Box
Spessore nominale (mm)		Valo	ri (%)	EN 10025-1:200
>	≤	min		
=3	40	22		
40	63	21		
63	100	2	0	
100	150	1	8	
150	160	1	7	
Spessore no	minale (mm)	Valori (J)		
>	≤			
	160	40 / -	20°C	
Spessore no	minale (mm)	Valor	ri (%)	
>	≤			
		·		
		·		
150	160	0,49		
Spessore no				_
>		min		
	160			
			Mn : 1,60	
			$Cu \cdot 0.55$	
			Cu : 0,55 S : 0,030	
	Spessore norm Spessore nor	16	Company Com	L EN 10056-2 UPN EN 10059 UPN EN 10279 Spessore nominale (mm) Valori (MPa) > ≤ min 16 355 345 40 63 40 63 80 100 315 325 80 100 315 295 150 160 285 295 Spessore nominale (mm) Valori (MPa) > ≤ min max -3 100 470 630 150 150 450 600 150 160 450 600 150 160 450 600 5 5 min 22 40 63 21 63 10 150 160 17 150 160 17 Spessore nominale (mm) Valori (%) 2 min max

No AMRO-2/11-CPR-18-01

1) Codice tipologia del prodotto: **\$450J0**Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante:

Da utilizzarsi per strutture saldate, bullonate o rivettate

2) ArcelorMittal Belval & Differdange
Site of Rodange
2, rue de l'industrie
L-4823 Rodange (G.D. of Luxembourg)
Tel: +352 5019 2366
sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di

supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratte	eristiche essenzi	ali	Prestaz	ione	Specifica tecnic armonizzata
	L		EN 10056-2		
]	EN 100		
Tolleranze sulle dimensioni e sulla forma	UF	Ϋ́N	EN 102	279	
	Spessore no	minale (mm)	Valori (I	МРа)	
	>	≤	min		
		16	450		
Limite elastico	16	40	430		
Resistenza allo	40	63	410		
	63	80	390		
F	80	100	380		
F	100	150	380		
	Spessore no	minale (mm)	Valori (N	MPa)	
<u> </u>	>	≤	min	max	
Resistenza allo	=3	100	550	720	
snervamento	100	150	530	700	
-	Spessore no	minale (mm)	Valori (%)		EN 10025-1:200
-	> ≤		min		EN 10025-1.200
<u> </u>	=3	40	17		
Allungamento	40	63	17		
	63	100	17		
F	100	150	17		
5	Spessore no	minale (mm)	Valori	(J)	
Resilienza	>	≤	min		
		150	27 / 09	°C	
	Spessore no	minale (mm)	Valori	(%)	
	>	≤	max		
Saldabilità		30	0,47		
_	30	40	0,49		
-	40	150	0,49)	-
Durabilità	Spessore no	minale (mm)	(mm) Valori (%)		
(Composizione	>	≤	min	max	
chimica)		150	Si M P	: 0,20 i : 0,55 ln : 1,70 : 0,035	
			S	u: 0,55 : 0,035 : 0,025	

No AMRO-2/12-CPR-20-01

1) Codice tipologia del prodotto: **\$460JR**Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante:

Da utilizzarsi per strutture saldate, bullonate o rivettate

2) ArcelorMittal Belval & Differdange
Site of Rodange
2, rue de l'industrie
L-4823 Rodange (G.D. of Luxembourg)
Tel: +352 5019 2366
sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding
Site Manager Rodange

CAUP

Caratte	Caratteristiche essenziali		Presta	azione	Specifica tecnica armonizzata
	ı		FN 10	0056-2	
<u>L</u>		1		0059	\dashv
Tolleranze sulle	UF			0279	
dimensioni e sulla _	-				
	Spessore no	minale (mm)	Valori	i (MPa)	
-	>	≤	m	nin	
	<u> </u>	16		60	
Limite elastico	16	40		40	
minimo	40	63		20	
-	63	80		00	\dashv
-	80	100		90	\dashv
-	100	150		90	\dashv
	100	130		 	
	Spessore no	minale (mm)	Valori	i (MPa)	
	>	≤	min	max	
Resistenza allo	=3	100	550	720	
snervamento	100	150	530	700	
_					_
-					
	Spessore nominale (mm)		Valo	ri (%)	EN 10025-1:200
	>	≤	min		
Allungamento	=3	40	17		
Allungamento	40	63		7	
	63	100	17		
-	100	150	17		
	Spessore no	minale (mm)	Valo	ori (J)	
Resilienza –	>	≤	m	nin	\dashv
		150		20°C	
	Spessore no	minale (mm)	Valo	ri (%)	
	>	≤	m	ax	
Saldabilità		30	0,	47	
	30	40	0,	49	
<u> </u>	40	150	0,49		
 Durabilità	Spessore no	minale (mm)	Valori (%)		
(Composizione	>	≤	min	max	
chimica)		150	111111	C: 0,20-0,22	\dashv
				Si: 0,55	
				Mn : 1,70	
				P: 0,035	
I		j j		,	
				Cu : 0,55 S : 0,035	

No AMRO-2/13-CPR-20-01

1) Codice tipologia del prodotto: **\$460J0**Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante:

Da utilizzarsi per strutture saldate, bullonate o rivettate

2) ArcelorMittal Belval & Differdange
Site of Rodange
2, rue de l'industrie
L-4823 Rodange (G.D. of Luxembourg)
Tel: +352 5019 2366
sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratteristiche essenziali		Prest	azione	Specifica tecnic armonizzata	
Т	1		EN 10056-2		
]	EN 10059		
Tolleranze sulle	UF			0279	
dimensioni e sulla forma					
	Spessore no	minale (mm)	Valor	i (MPa)	\dashv
-	>	≤	n	nin	
	·	16	460		
Limite elastico	16	40		40	
minimo	40	63		20	
	63	80		00	
-	80	100		90	\dashv
 	100	150		90	
	100	100			
L	Spessore no			i (MPa)	
	>	≤	min	max	_
Resistenza allo	=3	100	550	720	
snervamento	100	150	530	700	_
-					
	_		V-1 - 100		
	Spessore no	minale (mm)	Valo	ri (%)	EN 10025-1:200
	>	≤	min		
Allungamento	=3	40	17		
_	40	63	17		
-	63	100		7	
	100	150	1	17	
	Spessore no	minale (mm)	Valori (J)		
Resilienza	>	≤	min		
		150	27 /	′ 0°C	
	Spessore no	minale (mm)	Valori (%)		
	>	≤	m	ax	
Saldabilità		30	0,	47	
	30	40	0,	49	
F	40	150	0,49		\dashv
Durabilità	Spessore no	minale (mm)	Valori (%)		
(Composizione	>	≤	min	max	
chimica)		150		C: 0,20-0,22	
				Si : 0,55	
				Mn : 1,70	
				P: 0,035	
1					
				Cu : 0,55 S : 0,035	

No AMRO-2/14-CPR-20-01

1) Codice tipologia del prodotto: **\$460J2**Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante:

Da utilizzarsi per strutture saldate, bullonate o rivettate

2) ArcelorMittal Belval & Differdange Site of Rodange 2, rue de l'industrie L-4823 Rodange (G.D. of Luxembourg) Tel: +352 5019 2366 sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratteristiche essenziali		Presta	azione	Specifica tecnic armonizzata	
Т	L		EN 10056-2		
			EN 10059		
Tolleranze sulle	UP		EN 1		
dimensioni e sulla forma	<u>. </u>		<u> </u>	02.0	
	Spessore no	minale (mm)	Valori	(MPa)	\dashv
	>	≤	m	in	
		16	46	60	
Limite elastico	16	40	44	10	
minimo	40	63	42	20	
	63	80	40	00	
	80	100	39	90	
	100	150	39	90	
	Spessore no	minale (mm)	Valori	(MPa)	\dashv
-	>	≤	Valori (MPa) min max		
Resistenza allo	=3	100	550	720	\dashv
snervamento	100	150	530	700	
	.00	.00			
F					
	Spessore no	minale (mm)	Valori (%)		EN 10025-1:200
	>	≤	min		
Allungamento	=3	40	17		
Allungamento	40	63	17		
	63	100	17		
-	100	150	17		
	Spessore no	minale (mm)	Valo	ri (J)	
Resilienza –	>	≤	min		
		150	27 / -	20°C	
	Spessore no	minale (mm)	Valori (%)		
	>	≤	ma	ах	
Saldabilità		30	0,4		
	30	40	0,4		
F	40	150	0,49		
Durabilità	Spessore no	minale (mm)	Valori (%)		
(Composizione	>	≤	min	max	
chimica)		150		C: 0,20-0,22	
				Si : 0,55	
				Mn : 1,70	
				P: 0,035	
				Cu : 0,55	
				S: 0,035	
		l		N: 0,025	I

No AMRO-2/15-CPR-20-01

1) Codice tipologia del prodotto: \$460K2
Secondo EN 10025-2

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante:

Da utilizzarsi per strutture saldate, bullonate o rivettate

2) ArcelorMittal Belval & Differdange
Site of Rodange
2, rue de l'industrie
L-4823 Rodange (G.D. of Luxembourg)
Tel: +352 5019 2366
sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratteristiche essenziali		Prest	azione	Specifica tecnic armonizzata	
	1		EN 10056-2		
<u> </u>]	EN 10059		
Tolleranze sulle	UF			10279	
dimensioni e sulla forma					
	Spessore no	minale (mm)	Valor	i (MPa)	\dashv
-	>	≤	n	nin	-
		16	460		
Limite elastico	16	40		40	
minimo	40	63		20	
	63	80		00	
 -	80	100		90	\dashv
<u> </u>	100	150		90	
		133			
L	Spessore no			i (MPa)	
-	>	≤	min	max	_
Resistenza allo	=3	100	550	720	
snervamento	100	150	530	700	
	Spessore no	minale (mm)	Valori (%)		EN 10025-1:200
-	>	≤	m	nin	EIV 10023 1.200
	=3	40	17		
Allungamento	40	63	17		
	63	100	1	17	
F	100	150	17		\exists
	Spessore no	minale (mm)	Valori (J)		
Resilienza –	>	≤	min		
		150	40 /	-20°C	\Box
	Spessore no	minale (mm)	Valo	ori (%)	
	>	≤	m	ıax	
Saldabilità		30	0,	,47	
	30	40		,49	
	40	150	0,49		
Durabilità	Spessore no	minale (mm)	Valori (%)		
(Composizione	>	≤	min	max	
chimica)		150		C: 0,20-0,22	
				Si : 0,55	
				Mn : 1,70	
				P: 0,035	
				Cu : 0,55 S : 0,035	

No AMRO-4/03-CPR-18-01

1) Codice tipologia del prodotto: \$355M

Secondo EN 10025-4

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante:

Da utilizzarsi per strutture saldate, bullonate o rivettate

2) ArcelorMittal Belval & Differdange
Site of Rodange
2, rue de l'industrie
L-4823 Rodange (G.D. of Luxembourg)
Tel: +352 5019 2366
sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding
Site Manager Rodange

Caratteristiche essenziali		Prest	tazione	Specifica tecnic	
T	L	_	EN 10056-2		
]		10059	_
Tolleranze sulle dimensioni e sulla forma	UF	PN		10279	
iorina					
	Spessore no	minale (mm)	Valor	i (MPa)	
F	>	≤		min	1
		16		355	4
Limite elastico	16	40		345	_
minimo	40	63		335	_
_	63	80		325	_
L	80	100		325	_
F	100	120	3	320	-
	Spessore no	minale (mm)	Valor	i (MPa)	1
	>	≤	min	max	
Resistenza allo		40	470	630	
snervamento	40	63	450	610	
L	63	80	440	600	
-	80	100	440	600	4
	100 Spessore no	120	430 Vale	590	1
_	Spessore no		Valori (%)		EN 10025-1:200
-	>	≤	min 22		4
Allungamento		120	•	<u> </u>	1
-					1
	Spessore no	l minale (mm)	Val	ori (J)	1
Resilienza -	>	≤	min]
		120	40 /	-20°C	4
L	Spessore no	minale (mm)	Valori (%)		
L	>	≤		nax	
Saldabilità		16		,39	_
<u> </u>	16	40		,39	4
F	40 63	63 120	0,40 0,45		+
Durabilità	Spessore no		Valori (%)		1
(Composizione	>	≤	min	max	┥
chimica)		120	AI: 0,02	C: 0,16 Ti: 0,05	7
				Mn: 1,60 Cr: 0,30	
				Si: 0,50 Mo: 0,10	
				P: 0,030 Ni: 0,50	
				S: 0,030 Cu: 0,55 Nb: 0,05 N: 0,015	
		=.			

No AMRO-4/05-CPR-18-01

1) Codice tipologia del prodotto: **\$420M**Secondo EN 10025-4

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante:

Da utilizzarsi per strutture saldate, bullonate o rivettate

2) ArcelorMittal Belval & Differdange
Site of Rodange
2, rue de l'industrie
L-4823 Rodange (G.D. of Luxembourg)
Tel: +352 5019 2366
sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratteristiche essenziali		Presta	azione	Specifica tecnic armonizzata	
	L		EN 10	0056-2	
				0059	7
Tolleranze sulle	UP	N	EN 1	0279	
dimensioni e sulla forma					
	Spessore no	minale (mm)	Valori	(MPa)	1
	>	≤	m	nin	1
		16	42	20	
Limite elastico	16	40	4(00	
minimo	40	63		90	
· -	63	80		80	┪
<u> </u>	80	100		70	1
ļ.	100	120		65	1
	Spessore no	ninale (mm)	Valori	(MPa)	1
-	>	<u>≤</u>	min	max	┪
Resistenza allo		40	520	680	
snervamento	40	63	500	660	
	63	80	480	640	
	80	100	470	630	
	100	120	460	620	
	Spessore no	minale (mm)	Valori (%)		EN 10025-1:200
	>	≤	min		
Allungamento		120	19		
-					-
Decilione	Spessore no	minale (mm)	Valori (J)		1
Resilienza	>	≤	min		
		120	40 / -	-20°C	_
L	Spessore no	minale (mm)	Valori (%)		<u> </u>
	>	≤	max		
Saldabilità		16		43	
<u> </u>	16	40		45	
-	40	63		46	4
Durahilità	63	120	0,47 Valori (%)		1
Durabilità	Spessore no				4
(Composizione	>	≤	min	max	4
chimica)		120	AI: 0,02	C: 0,18 Ti: 0,05	
				Mn : 1,70	
				P: 0,035 Ni: 0,80	
				S: 0,030 Cu: 0,55	
				Nb : 0,05 N : 0,025	
			1	V:0,12	Ī

No AMRO-4/07-CPR-18-01

1) Codice tipologia del prodotto: **\$460M**Secondo EN 10025-4

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante:

Da utilizzarsi per strutture saldate, bullonate o rivettate

2) ArcelorMittal Belval & Differdange
Site of Rodange
2, rue de l'industrie
L-4823 Rodange (G.D. of Luxembourg)
Tel: +352 5019 2366
sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratteristiche essenziali		Pres	tazione	Specifica tecnica armonizzata	
	L		EN 1	10056-2	
]		10059	
Tolleranze sulle dimensioni e sulla forma	UF	PN	EN	10279	
	Spessore no	minale (mm)	Valo	ri (MPa)	-
	>	≤		min	1
		16	4	460	7
Limite elastico	16	40	4	440	7
minimo	40	63		430	1
	63	80		410	┪
	80	100		400	1
	100	120		385	1
	Spessore no	 minale (mm)	Valo	ri (MPa)	1
F	>	< /	min	max	-
Resistenza allo		40	540	720	1
snervamento	40	63	530	710	
<u>-</u>	63	80	510	690	
	80	100	500	680	7
	100	120	490	660	1
	Spessore no	minale (mm)	Valori (%)		EN 10025-1:20
	>	≤	min		
Allungamento		120		17	‡
_					}
Pacilian = a	Spessore no	minale (mm)	Val	lori (J)	
Resilienza -	>	≤		min]
	0	120		/ -20°C	┪
<u> </u>	Spessore no			ori (%)	4
	>	≤		max	4
Saldabilità	16	16		0,45	_
-	16 40	40 63),46),47	┥
-	63	120	0,47 0,48		┪
Durabilità	Spessore no		Valori (%)		1
(Composizione	>	≤	min	max	┥
chimica)		120	AI : 0,02	C: 0,18 Ti: 0,05	7
·				Mn : 1,70 Cr : 0,30	
				Si: 0,60 Mo: 0,20	
				P: 0,035 Ni: 0,80	
				S: 0,030 Cu: 0,55	
		I	I	Nb: 0,05 N: 0,025	I

No AMRO-5/01-CPR-18-01 1) Codice tipologia del prodotto: S355J0W Secondo EN 10025-5

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante: Da utilizzarsi per strutture saldate, bullonate o rivettate

> ArcelorMittal Belval & Differdange Site of Rodange 2, rue de l'industrie L-4823 Rodange (G.D. of Luxembourg) Tel: +352 5019 2366 sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratteristiche essenziali		Pres	Prestazione		
	L	_	EN 10056-2		
				l 10059	7
Tolleranze sulle	UF			l 10279	7
dimensioni e sulla					
	Spessore no	minale (mm)	Valo	ori (MPa)	1
	>	≤	min		7
		16		355	
Limite elastico	16	35		345	
minimo					
	Spessore no	minale (mm)	Valo	ori (MPa)	
	>	≤	min	max	
Resistenza allo	=3	35	470	630	
snervamento	35	35	470	630	Ⅎ
Allungamento	Spessore no > =3	minale (mm) ≤ 35		lori (%) min 22	EN 10025-1:200
Resilienza –	Spessore no	•	Valori (J)		
<u> </u>	>	≤		min 7 / 0°C	4
	Spessore no	35 minale (mm)	27 / 0°C Valori (%)		-
	>	≤	İ	max	7
Saldabilità		16		0,52	7
	16	35	0,52		}
Durabilità	Spessore no	minale (mm)	Valori (%)		-
(Composizione	>	≤	min	max	Ⅎ
chimica)		35	Mn: 0,50 Cu: 0,25 Cr: 0,40	C: 0,16	
				Mn : 1,50 Cu : 0,55	

No AMRO-5/02-CPR-18-01 1) Codice tipologia del prodotto: S355J2W Secondo EN 10025-5

Uso o usi previsti del prodotto da costruzione, conformemente alla relativa specifica tecnica armonizzata, come previsto dal fabbricante: Da utilizzarsi per strutture saldate, bullonate o rivettate

> ArcelorMittal Belval & Differdange Site of Rodange 2, rue de l'industrie L-4823 Rodange (G.D. of Luxembourg) Tel: +352 5019 2366 sections.arcelormittal.com

Sistema o sistemi di valutazione e verifica della costanza della prestazione del prodotto da costruzione:

Sistema 2+

L'organismo di certificazione No. 0769 Karlsruher Institut für Technologie (KIT) - Versuchsanstalt für Stahl, Holz und Steine abilitato al controllo di produzione aziendale ha provveduto all'ispezione iniziale dello stabilimento di produzione e del sistema di controllo, di supervisione, di valutazione e di classificazione della produzione, e pertanto rilascia il certificato di conformità al sistema di controllo della produzione aziendale.

La prestazione del prodotto di cui ai punti 1 è conforme alla prestazione dichiarata in tabella.

Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 2. Firmato a nome e per conto di:

Henri Reding

Site Manager Rodange

Caratteristiche essenziali		Pre	estazione	Specifica tecnic armonizzata	
	I	_	EN	10056-2	
F				EN 10059	
Tolleranze sulle	UF	PN		N 10279	
dimensioni e sulla forma					
	Spessore no	minale (mm)	Val	ori (MPa)	
	>	≤		min	
		16		355	
Limite elastico minimo	16	35		345	
	Spessore no	ominale (mm)	Val	ori (MPa)	
-	>	≤	min	max	
Resistenza allo	=3	35	470	630	
snervamento	35	35	470	630	_
-					
	Spessore no	minale (mm)	Valori (%)		EN 10025-1:200
<u> </u>	>	≤	min		
Allungamento	=3	35		22	
Resilienza	Spessore no	minale (mm)	Valori (J)		
Resilienza	>	≤	min		
		35	27 / -20°C		
_		minale (mm)	Valori (%)		_
Saldabilità	>	≤ 16	1	max 0,52	\dashv
Saldabilita	16	35	0,52		
	Snessore no	minale (mm)	Ve	alori (%)	\exists
<u> </u>					_
(Composizione chimica)	>	≤ 35	min Mn: 0,50 Cu: 0,25 Cr: 0,40	max C: 0,16 Si: 0,50 P: 0,035 S: 0,035	
				Mn : 1,50 Cu : 0,55 Cr : 0,80	