

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/01-CPR-13-1 1) Code of the product type: S235JR According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

1/ Nominal thic		EN 1	0034	
	kness (mm)	Values	s (MPa)	_
>	≤	m	in	
	16	23	35	
16	40	22	25	-
40	63	2	15	-
63	80	21	15	
80	100			
100	140	19	95	-
Nominal thic	kness (mm)	Values	; (MPa)	
>	≤	min	max	
=3	100	360	510	
100	140	350	500	_
				-
Nominal thic	kness (mm)	Value	es (%)	EN 10025-1:2004
> ≤		min		
=3	40			
				_
100	140	2	2	
Nominal thic	kness (mm)	Value	es (J)	
>	≤			_
	140	277	20°C	_
Nominal thickness (mm)				
>				_
20				_
				-
40	140			
Nominal thickness (mm)		Value	es (%)	
>	≤	min	max	
	140		C : 0,17-0,20 Mn : 1,40 P : 0,040 Cu : 0,55 S : 0,040 N : 0,012	
	40 63 80 100 Nominal thic > =3 100 Nominal thic > 30 40 Nominal thic >	16 40 40 63 63 80 80 100 100 140 Nominal thickness (mm) > \leq =3 100 100 140 Nominal thickness (mm) 100 > \leq =3 40 40 63 63 100 100 140 Nominal thickness (mm) $>$ > \leq 100 140 Nominal thickness (mm) $>$ > \leq 30 40 40 140 Nominal thickness (mm) $>$ > \leq 30 40 40 140 Nominal thickness (mm) $>$ > \leq 30 40 40 140	16 40 22 40 63 22 63 80 22 80 100 27 100 140 11 Nominal thickness (mm) Values > \leq min =3 100 360 100 140 350 Nominal thickness (mm) Values > \leq m =3 40 22 40 63 22 63 100 22 100 140 22 Mominal thickness (mm) Value > \leq m 30 140 27 / Nominal thickness (mm) Value > \leq m 30 0, 0, 30 40 0, 40 140 0, > \leq m 30 0, 0, 40 140 0, > \leq m <	16 40 225 40 63 215 63 80 215 80 100 215 100 140 195 Nominal thickness (mm) Values (MPa) > \leq min max =3 100 360 510 100 140 350 500 - - - - Nominal thickness (mm) Values (%) - > \leq min - - - - - Nominal thickness (mm) Values (%) - - > \leq min - =3 40 26 - 40 63 25 - 63 100 24 - 100 140 27/20°C - Nominal thickness (mm) Values (J) - - > \leq min - 30 0,35 - - 30 0,35

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/02-CPR-13-1 1) Code of the product type: **\$235J0** According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

1/H hickness (mm) ≤ 16 40 63 80 100 140 hickness (mm) ≤ 100	EN 1 Values m 23 22 21 21 21 21 21 21 21 21 21 21 21 21	: (MPa) in 35 25 15 15 15 15 25	
≤ 16 40 63 80 100 140 hickness (mm) ≤	m 23 22 21 21 21 21 15 Values min	in 35 25 15 15 15 15 25 25 26 (MPa)	
≤ 16 40 63 80 100 140 hickness (mm) ≤	m 23 22 21 21 21 21 15 Values min	in 35 25 15 15 15 15 25 25 26 (MPa)	
16 40 63 80 100 140 hickness (mm) ≤	23 22 21 21 21 21 21 21 21 21 21 21 21 21	35 25 15 15 15 15 15 15 15 15 15 15 15 15 15	
40 63 80 100 140 hickness (mm) ≤	22 21 21 21 21 15 Values min	25 15 15 15 15 25 (MPa)	
63 80 100 140 hickness (mm) ≤	21 21 21 15 Values min	5 5 5 95 (MPa)	
80 100 140 hickness (mm) ≤	21 21 15 Values min	15 15 95 • (MPa)	
100 140 hickness (mm) ≤	21 19 Values min	15 95 • (MPa)	
140 hickness (mm) ≤	19 Values min	95 (MPa)	
hickness (mm) ≤	Values min	(MPa)	_
<u>≤</u>	min		
		max	1
100	360		
		510	
140	350	500	
1 +			
hickness (mm)	Value		EN 10025-1:2004
> <u>≤</u> =3 40		min 26	
40 63		25	
100		24	
140	22		
hickness (mm)	Values (J)		-
≤	m		
140	27 / 0°C		
hickness (mm)	Value		
≤	ma		
30	0,3		
40 140	0,3		
140	0,,	50	_
Nominal thickness (mm)		es (%)	
	min	max	
nickness (mm) ≤		C:0,17 Mn:1,40 P:0,035 Cu:0,55 S:0,035 N:0012	
4		≤ min	≤ min max 140 C:0,17 Mn:1,40 P:0,035 Cu:0,55

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/03-CPR-13-1 1) Code of the product type: **\$235J2** According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Esse	Essential characteristic		Performance		Harmonised technical specification	
	1/	Н	EN 10	0034		
Tolerances on dimensions and shape						
	Nominal thic	kness (mm)	Values	(MPa)	_	
•	>	≤	mi	n		
		16	23	5		
	16	40	22	5		
Yield strength	40	63	21	5		
	63	80	21	5		
	80	100	21	5		
	100	140	19	5	_	
	Nominal thic	kness (mm)	Values	(MPa)	_	
•	>	≤	min	max		
Tensile strength	=3	100	360	510		
renanc arengin	100	140	350	500		
					_	
	Nominal thickness (mm)		Values		EN 10025-1:2004	
	>	<u>≤</u> 40	mi 20		_	
Elongation	=3 40	40 63	25			
	63	100	24			
	100	140	22		_	
	Nominal thic	kness (mm)	Values (J)		_	
Impact strength	>	≤	mi	n		
		140	27 / -2	20°C		
	Nominal thickness (mm)		Values			
	>	≤	ma			
Weldability		30	0,3		_	
	30 40	40 140	0,3 0,3			
	40	140	0,3	0		
Durability	Nominal thickness (mm)		Values	s (%)		
(Chemical	>	≤	min	max		
composition)		140		C : 0,17 Mn : 1,40 P : 0,030 Cu : 0,55 S : 0,030		

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/04-CPR-13-1 1) Code of the product type: S275JR According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Esse	Essential characteristic		Performance		Harmonised technical specification	
	I/H		EN 10034			
Tolerances on dimensions and shape						
	Nominal thicl	kness (mm)	Values	(MPa)	_	
F	>	≤	m	in		
Γ		16	27	75		
	16	40	26	65		
Yield strength	40	63	25	55		
ľ	63	80	24	45		
, Ē	80	100	23	35		
-	100	140	22	25	_	
	Nominal thic	mess (mm)	Values	(MPa)		
F	>	≤	min	max		
	=3	100	410	560		
Tensile strength	100	140	400	540		
-						
	Nominal thic	kness (mm)	Value	es (%)	EN 10025-1:2004	
	>	≤		min		
Elongation	=3	40		23		
gatter.	40	63	2			
-	63 100	100 140	2	<u>1</u> 9		
-	100	140	Ι	9		
Impact strength	Nominal thic		Value			
	>	<u>≤</u>	m			
		140	27 / 2			
	Nominal thic		Value			
Malalah 114 .	>	≤ 30				
Weldability	30	40	0,4			
	40	140	0,-			
t the second sec	10	110	-1			
Durability	Nominal thickness (mm)		Value	es (%)		
(Chemical	>	≤	min	max		
composition)		140		C : 0,21-0,22 Mn : 1,50 P : 0,040 Cu : 0,55 S : 0,040 N : 0,012		

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/05-CPR-13-1 1) Code of the product type: **\$275J0** According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Performance		Harmonised technical specification
I/H		EN 1	10034	
Nominal thic	kness (mm)	Values	s (MPa)	_
>	≤	m	nin	
	16	2	75	
16	40	2	65	-
40	63	2	55	-
63	80	2	45	
80	100	2	35	
100	140	2	25	-
Nominal thic	kness (mm)	Values	s (MPa)	
>	≤	min	max	
=3	100	410	560	
100	140	400	540	
Nominal thic	kness (mm)	Value	es (%)	EN 10025-1:2004
> ≦			min	
				_
				_
100	140			
Nominal thic	kness (mm)	Valu	es (J)	
>	≤			_
				_
>				_
20				_
				-
40	140	0,	12	
Nominal thic	Nominal thickness (mm)		es (%)	
>	≤	min	max	
	140		C : 0,18 Mn : 1,50 P : 0,035 Cu : 0,55 S : 0,035 N : 0,012	
	Nominal thic > 16 40 63 100 Nominal thic > =3 100 Nominal thic > =3 100 Nominal thic > =3 40 63 100 Nominal thic > 30 40 Nominal thic > 30 40	I/H Nominal thickness (mm) > \$ 16 40 40 63 63 80 80 100 100 140 Nominal thickness (mm) > \$ =3 100 100 140 Nominal thickness (mm) > \$ =3 40 40 63 63 100 100 140 Nominal thickness (mm) > \$ 100 140 Nominal thickness (mm) > \$ 30 30 30 40 40 140 Nominal thickness (mm) \$ > \$ 30 30 30 40 40 140	I/H EN Nominal thickness (mm) Values > \$ n 16 40 2 40 63 2 63 80 2 80 100 2 100 140 2 Nominal thickness (mm) Values > \$ min =3 100 410 100 140 400 - - - Nominal thickness (mm) Values > \$ min =3 100 410 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	I/H EN 10034 Nominal thickness (mm) Values (MPa) > \$ 16 275 16 40 255 63 80 100 140 225 100 140 225 100 100 140 235 63 80 100 245 80 100 140 225 100 100 140 23 100 410 560 100 140 100 140 23 40 40 63 22 63 100 140 21 100 100 140 21 100 140 27/0°C Nominal thickness (mm) Values (%) > \$ 30 0.40 30 0.40 30 0.40 30 0.40

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/06-CPR-13-1 1) Code of the product type: **\$275J2** According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Esse	Essential characteristic		Perfor	mance	Harmonised technical specification
	I/H		EN 1	0034	•
-					
Tolerances on dimensions and shape					
	Nominal thic	kness (mm)	Values	(MPa)	-
-	>	≤	m	in	
_		16	27		
	16	40	26		
Yield strength	40	63	25		
	63	80	24		
-	80	100	23		
	100	140	22		-
	Nominal thic	kness (mm)	Values	(MPa)	_
	>	≤	min	max	
	=3	100	410	560	
Tensile strength	100	140	400	540	
-					-
	Nominal thic	kness (mm)	Value	s (%)	EN 10025-1:2004
	>	≤	m		
Elongation	=3	40	23 22		
-	40 63	63 100			
-	100	140	<u>21</u> 19		
	100	140	•	0	
Impost strongth	Nominal thic	kness (mm)	Values (J)		
Impact strength	>	≤	m		
		140	27 / -	20°C	
	Nominal thickness (mm)		Value	s (%)	
	>	≤	m		
Weldability		30	0,4		
_	30	40	0,•		
	40	140	0,4	42	_
Durability	Nominal thickness (mm)		Value	s (%)	
(Chemical	>	≤	min	max	
composition)		140		C:0,18	
				Mn : 1,50 P : 0,030	
				Cu : 0,55	
				S : 0,030	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/07-CPR-13-1 1) Code of the product type: S355JR According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Esse	Essential characteristic		Performance		Harmonised technical specification
	I/H		EN 10	0034	-
	.,				
Tolerances on dimensions and shape					
	Nominal thic	kness (mm)	Values	(MPa)	-
-	>	5	mi	n	-
		16	35		
F	16	40	34		
Yield strength	40	63	33		
F	63	80	32		
, F	80	100	31		
	100	140	29		_
	Nominal thic	kness (mm)	Values	(MPa)	-
-	>	≤	min	max	
	=3	100	470	630	
Tensile strength	100	140	450	600	
-					_
					_
	Nominal thic	kness (mm)	Value	s (%)	EN 10025-1:2004
	>	≤	mi		
Elongation	=3	40	22		_
	40	63	21		_
-	63 100	100 140	20 18		-
-	100	140		5	_
Impact strength	Nominal thic	kness (mm)	Values (J)		
impact strength	>	≤	mi		
		140	27 / 2	20°C	
	Nominal thickness (mm)		Value	s (%)	
_	>	≤	ma		
Weldability		30	0,4		_
	30	40	0,4		_
F	40	140	0,4	1	
Durability	Nominal thickness (mm)		Value	s (%)	
(Chemical	>	≤	min	max	
composition)		140		C : 0,24	
				Si : 0,55	
				Mn : 1,60	
				P : 0,040 Cu : 0,55	
				S : 0,040	
				N : 0,012	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/08-CPR-13-1 1) Code of the product type: **\$355J0** According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Esse	Essential characteristic		Performance		Harmonised technical specification
	I/H		EN 1	0034	
F	.,.		2		
Tolerances on dimensions and shape					
	Nominal thick	(ness (mm)	Values	; (MPa)	
F	>	≤	m	in	
F		16		55	
	16	40	34	45	
Yield strength	40	63		35	
	63	80	32	25	
F	80	100	3	15	
	100	140	29	95	
	Nominal thick	(ness (mm)	Values	s (MPa)	
	>	≤	min	max	
	=3	100	470	630	
Tensile strength	100	140	450	600	
_					
-					_
	Nominal thick	kness (mm)	Value	es (%)	EN 10025-1:2004
	>	≤	min		
Elongation	=3	40		22	
	40	63	2		
	63 100	100 140		20 18	
	100	140	I	0	_
Impact strength	Nominal thickness (mm)		Values (J)		
impact strength	>	≤		in	
		140	27 /	0°C	
	Nominal thick	mess (mm)	Value	es (%)	
_	>	≤	m		
Weldability		30		45	
	30 40	40 140	0, 0,		
	40	140	0,	47	
Durability	Nominal thickness (mm)		Value	es (%)	
(Chemical	>	≤	min	max	
composition)		140		C : 0,20-0,22	
				Si : 0,55	
				Mn : 1,60 P : 0,035	
				P : 0,035 Cu : 0,55	
				S : 0,035	
				N : 0,012	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/09-CPR-13-1 1) Code of the product type: **S355J2** According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

1/ Nominal thic Nominal thic 16 40 63 80 100 Nominal thic 3 =3 100	kness (mm) ≤ 16 40 63 80 100 140	Value: n 3 3 3 3 3 3 3 3 2	8 (MPa) nin 55 45 35 25 15 95 s (MPa) max 630 600	
> 16 40 63 80 100 Nominal thic > =3	≤ 16 40 63 80 100 140 kness (mm) ≤ 100	n 3 3 3 3 3 3 2 2 Value: min 470	in 55 45 35 25 15 95 s (MPa) max 630	
> 16 40 63 80 100 Nominal thic > =3	≤ 16 40 63 80 100 140 kness (mm) ≤ 100	n 3 3 3 3 3 3 2 2 Value: min 470	in 55 45 35 25 15 95 s (MPa) max 630	
16 40 63 80 100 Nominal thic > =3	16 40 63 80 100 140 kness (mm) ≤ 100	3 3 3 3 3 3 2 Value: min 470	55 45 35 25 15 95 s (MPa) max 630	
16 40 63 80 100 Nominal thic > =3	40 63 80 100 140 kness (mm) ≤ 100	3 3 3 3 3 3 2 Value: min 470	55 45 35 25 15 95 s (MPa) max 630	
40 63 80 100 Nominal thic > =3	63 80 100 140 kness (mm) ≤ 100	3 3 2 2 Value: min 470	35 25 15 95 s (MPa) max 630	
63 80 100 Nominal thic > =3	80 100 140 kness (mm) ≤ 100	3 3 2 Value: min 470	25 15 95 s (MPa) max 630	
80 100 Nominal thic > =3	100 140 kness (mm) ≤ 100	3 2 Value: min 470	15 95 s (MPa) max 630	
100 Nominal thic > =3	140 kness (mm) ≤ 100	2 Value: min 470	95 s (MPa) max 630	
Nominal thic > =3	kness (mm) ≤ 100	Value: min 470	s (MPa) max 630	
> =3	≤ 100	min 470	max 630	
=3	100	470	630	
				\exists
100	140	450	600	
Nominal thic	kness (mm)	Value	es (%)	EN 10025-1:2004
>	≤	min		
=3	40	22		
40	63		21	
63 100	100 140		20 18	
100	140		10	
Nominal thickness (mm)		Values (J)		
>	≤			
		27 / -20°C		
>				
40	140	0	-1	_
Nominal thickness (mm)		Value	es (%)	
>	≤	min	max	
	140		Si : 0,55 Mn : 1,60 Cu : 0,55 S : 0,030	
	> Nominal thic 30 40 Nominal thic	≤ 140 Nominal thickness (mm) > > ≤ 30 40 40 140 Nominal thickness (mm) >	≤ m 140 27 / Nominal thickness (mm) Value ≥ ≦ 30 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	> ≤ min 140 27 / -20°C Nominal thickness (mm) Values (%) > ≤ max 30 0,45 30 30 40 0,47 40 140 0,47 Values (%) × ≤ Nominal thickness (mm) Values (%) > ≤ min 140 C: 0,20-0,22 Si: 0,55 Mn: 1,60 Cu: 0,55

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/10-CPR-13-1 1) Code of the product type: S355K2 According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Esse	Essential characteristic		Perfor	Performance		
	1/	Н	EN 1	0034		
Tolerances on dimensions and shape						
	Nominal thic	. ,		s (MPa)	_	
-	>	≤		nin 		
_		16		55		
Yield strength	16	40		45		
	40	63		35		
	63	80	-	25		
	80	100		15		
-	100	140	2	95		
	Nominal thic	kness (mm)	Values	s (MPa)		
	>	≤	min	max		
Tensile strength	=3	100	470	630		
rensile strength	100	140	450	600		
_						
					-	
	Nominal thic	kness (mm)	Value	es (%)	EN 10025-1:2004	
	>	≤	min			
Elongation	=3	40		22		
Liongation	40	63		21		
_	63	100		20		
-	100	140	1	8	_	
Impact strength	Nominal thic	kness (mm)	Values (J)			
impact strength	>	≤		nin		
		140	40 / -20°C			
	Nominal thickness (mm)		Value	es (%)		
	>	≤		ax		
Weldability		30		45		
-	30 40	40 140		47 47	_	
F	40	140	0,	47		
Durability	Nominal thickness (mm)		Value	es (%)		
(Chemical	>	≤	min	max		
composition)		140		C : 0,20-0,22 Si : 0,55 Mn : 1,60 Cu : 0,55 S : 0,030		
				P : 0,030		

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/12-CPR-20-1 1) Code of the product type: **S460JR** According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Esse	Essential characteristic		Perfor	Performance	
	1/	Н	EN 1	0034	
Tolerances on dimensions and shape					
	Nominal thic	kness (mm)	Values	(MPa)	
	>	≤	m	in	
		16	46	60	
Violal stress with	16	40	44	10	
Yield strength	40	63	42	20	
	63	80	40	00	
	80	100	39		
-	100	140	39	90	_
	Nominal thic	kness (mm)	Values	(MPa)	
	>	≤	min	max	
Tensile strength	=3	100	550	720	
- one on ongin	100	140	530	700	
	Newtooldt			- (9())	-
_	Nominal thickness (mm)		Value		EN 10025-1:2004
-	> =3	≤ 40	min 17		
Elongation	40	63		17	
	63	100		17	
F	100	140	17		_
Impact strength	Nominal thic	kness (mm)	Values (J)		
impact strength	>	≤	m		
		140	27 / 2	20°C	
	Nominal thic		Value		
	>	≤	ma		_
Weldability	30	30 40	0,4 0,4		
	40	140	0,4		
	-10	140	3,		
Durability	Nominal thickness (mm)		Value	es (%)	
(Chemical	>	≤	min	max	
composition)		140		C : 0,20-0,22 Si : 0,55 Mn : 1,70 P : 0,035 Cu : 0,55	
				S : 0,035 N : 0,025	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/13-CPR-20-1 1) Code of the product type: **\$460J0** According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Esse	Essential characteristic		Performance		Harmonised technical specification
	I/H		EN 10034		
Tolerances on dimensions and shape					
	Nominal thick	mess (mm)	Values	s (MPa)	-
	>	≤	m	nin	
		16	4	60	
Yield strength	16	40	44	40	
neid strength	40	63	42	20	
	63	80		00	
	80	100		90	
	100	140	3	90	_
	Nominal thick	kness (mm)	Values	s (MPa)	
	>	≤	min	max	
Tanaila atronath	=3	100	550	720	
Tensile strength	100	140	530	700	
					_
					-
	Nominal thick	mess (mm)	Value	es (%)	EN 10025-1:2004
	>	≤	min		
Elongation	=3	40	17		
	40	63		7	
	63	100 140		7 7	_
	100	140		1	_
Impact strength	Nominal thick	kness (mm)	Values (J)		
impact strength	>	≤		nin	
		140	27 /	0°C	_
	Nominal thickness (mm)		Value	es (%)	
	>	≤		ax	
Weldability		30	,	47	
	30	40		49 49	_
	40	140	0,	49	_
Durability	Nominal thick	mess (mm)	Value	es (%)	
(Chemical	>	≤	min	max	
composition)		140		C : 0,20-0,22	
				Si : 0,55	
				Mn : 1,70 P : 0,035	
				P : 0,035 Cu : 0,55	
				S : 0,035	
				N : 0,025	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/14-CPR-20-1 1) Code of the product type: **\$460J2** According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Perfor	mance	Harmonised technical specification	
	1/	Н	EN 1	0034	
Tolerances on dimensions and shape					
	Nominal thic	kness (mm)	Values	(MPa)	_
t the second sec	>	≤	m	in	-
ſ		16	46	60	
	16	40	44	40	-
Yield strength	40	63	42	20	
	63	80	40	00	
	80	100	39		
F	100	140	39	90	_
	Nominal thic	kness (mm)	Values	(MPa)	
F	>	≤	min	max	
Tensile strength	=3	100	550	720	
Tensne strengtri	100	140	530	700	
	Nominal thickness (mm)		Value	es (%)	EN 10025-1:2004
	>	≤	m		
Elongation	=3	40	1		_
-	40 63	63 100	1		-
	100	140	1		
	Nominal thic	kness (mm)	Value	es (J)	_
Impact strength	>	≤	m	in	-
		140	27 / -	20°C	
	Nominal thic	kness (mm)	Value		
	>	≤	ma		
Weldability		30	0,4		_
	30	40 140	0,4		_
	40	140	0,4	49	_
Durability	Nominal thic	kness (mm)	Value	es (%)	
(Chemical	>	≤	min	max	
composition)		140		C : 0,20-0,22 Si : 0,55 Mn : 1,70 P : 0,035 Cu : 0,55	
				S : 0,035 N : 0,025	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/15-CPR-20-1 1) Code of the product type: **\$460K2** According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Perfor	mance	Harmonised technical specification	
	1/	Н	EN 1	0034	
Tolerances on dimensions and shape					
	Nominal thic	kness (mm)	Values	s (MPa)	_
F	>	≤	m	in	
		16	46	60	
Violal advantation	16	40	44	40	
Yield strength	40	63	42	20	
	63	80	40	00	
	80	100		90	
	100	140	39	90	_
	Nominal thic	kness (mm)	Values	s (MPa)	
	>	≤	min	max	
Tensile strength	=3	100	550	720	
renone ou ongui	100	140	530	700	
					_
	Nominal thickness (mm)		Values (%)		EN 10025-1:2004
-	>	≤		iin 7	
Elongation	=3 40	40 63		<u> </u>	
F	63	100		7	
-	100	140	1	7	_
Impact strength	Nominal thic	kness (mm)	Value	es (J)	
impact strength	>	≤		in	
		140	40 / -	-20°C	
	Nominal thic			es (%)	
	>	≤		ax	
Weldability		30		47	
-	30 40	40 140		49 49	
ŀ	40	140	0,	49	-
Durability	Nominal thic	kness (mm)	Value	es (%)	
(Chemical	>	≤	min	max	
composition)		140		C : 0,20-0,22 Si : 0,55 Mn : 1,70 P : 0,035 Cu : 0,55	
				S : 0,035 N : 0,025	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-2/16-CPR-20-1 1) Code of the product type: **\$500,10** According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Perfor	mance	Harmonised technical specification	
	1/	Н	EN 1	0034	
Tolerances on dimensions and shape					
	Nominal thic	kness (mm)	Values	s (MPa)	_
F	>	5	m	in	_
F		16		00	
	16	40	4	80	
Yield strength	40	63		60	
	63	80		50	
, F	80	100	4	50	
	100	140	4	50	_
	Nominal thic	kness (mm)	Values	s (MPa)	
-	>	≤	min	max	
Tensile strength	=3	100	580	760	
	100	140	560	750	_
	Nominal thickness (mm)		Value	es (%)	EN 10025-1:2004
	>	≤		iin	
Elongation	=3	40	15		
	40	63		5 5	_
F	63 100	100 140		5	_
	100	140	•	0	
Impact strength	Nominal thic	kness (mm)	Value	es (J)	
impact strength	>	≤		iin	
		140		0°C	_
	Nominal thic	. ,		es (%)	
Malalah 114.	>	≤ 20		ax 49	_
Weldability	30	30 40	,	49 49	
-	40	140		49	
	10		-,		
Durability	Nominal thic	kness (mm)	Value	es (%)	
(Chemical	>	≤	min	max	
composition)		140		C : 0,20-0,22 Si : 0,55	
				SI: 0,55 Mn: 1,70	
				P : 0,035	
				Cu : 0,55	
				S: 0,035	
				N : 0,025	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-4/01-CPR-13-1 1) Code of the product type: **S275M** According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Perfor	mance	Harmonised technical specification	
	1/1	4	EN 1	10034	
Tolerances on dimensions and shape					
	Nominal thicl	kness (mm)	Values	s (MPa)	
•	>	≤	m	nin	
		16	2	75	
Viold strongth	16	40	2	65	
Yield strength	40	63	2	55	
	63	80	2	45	
	80	100		45	
	100	140	2	40	
	Nominal thick	(ness (mm)	Values	s (MPa)	
	>	≤	min	max	
Tensile strength		40	370	530	
rensile strength	40	63	360	520	
	63	80	350	510	
	80 100	100 140	350 350	510 510	
	Nominal thic			es (%)	EN 10025-1:2004
	>	<u>≤</u>	m	nin	LN 10025-1.2004
	-	140		24	
Elongation					
Impact strength	Nominal thick	kness (mm)	Valu	es (J)	
impact strength	>	≤		nin	
		140	40 / -	-20°C	
	Nominal thic			es (%)	
MAY - 1 - 1 - 11-12	>	<u>≤</u>		ax 34	
Weldability	16	16 40		34	
	40	63		35	
	63	140	,	38	
Durability	Nominal thick	kness (mm)	Value	es (%)	
(Chemical	>	5	min	max	
composition)		140	AI : 0,02	C : 0,15 Ti : 0,05	
				Mn : 1,50 Cr : 0,30	
				Si : 0,50 Mo : 0,10 P : 0,030 Ni : 0,30	
				S : 0,030 Cu : 0,55	
				Nb : 0,05 N : 0,015	
				V : 0,08	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-4/03-CPR-13-1 1) Code of the product type: S355M According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Perfo	rmance	Harmonised technical specification	
	1/1	4	EN 1	10034	
Tolerances on dimensions and shape					
	Nominal thicl	kness (mm)	Value	s (MPa)	
	>	≤	n	nin	
		16	3	55	
Vialal atmospath	16	40	3	345	
Yield strength	40	63	3	35	
	63	80	3	325	
	80	100	3	325	
-	100	140	3	320	
	Nominal thicl	kness (mm)	Value	s (MPa)	
-	>	≤	min	max	
-		40	470	630	
Tensile strength	40	63	450	610	
	63	80	440	600	
	80	100	440	600	
	100	140	430	590	
	Nominal thickness (mm)			es (%)	EN 10025-1:2004
-	>	<u>≤</u>		nin 22	
Elongation		140		22	
lana at atraa at	Nominal thicl	kness (mm)	Valu	ies (J)	
Impact strength	>	≤		nin	
		140	40 /	-20°C	
	Nominal thicl	kness (mm)	Valu	es (%)	
	>	≤		nax	
Weldability		16		,39	
-	16	40		,39	
-	40 63	63 140		,40 ,45	
Durability	Nominal thic			es (%)	
(Chemical	>	≤	min	max	
composition)	-	140	AI : 0,02	C : 0,16 Ti : 0,05	1
1 7		. 10		Mn : 1,60 Cr : 0,30	
				Si : 0,50 Mo : 0,10	
				P : 0,030 Ni : 0,50	
				S : 0,030 Cu : 0,55	
				Nb: 0,05 N: 0,015	
			1	V : 0,10	1

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-4/04-CPR-13-1 1) Code of the product type: S355ML According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Hayper

Essential characteristic		Perfo	rmance	Harmonised technical specification	
	1/1	4	EN	10034	
Tolerances on dimensions and shape					
	Nominal thic	kness (mm)	Value	s (MPa)	-
•	>	≤	n	nin	
		16	3	55	
	16	40	3	45	
Yield strength	40	63	3	35	
	63	80	3	25	
	80	100	3	25	
	100	125	3	320	
	Nominal thic	kness (mm)	Value	s (MPa)	-
	>	≤	min	max	
		40	470	630	
Tensile strength	40	63	450	610	
	63	80	440	600	
	80	100	440	600	
	100	125	430	590	
	Nominal thic	kness (mm)	Valu	es (%)	EN 10025-1:2004
	>	≤		nin	
Elongation		125		22	
-			-		-
Impact strength	Nominal thic	kness (mm)	Valu	ies (J)	
impact strength	>	≤		nin	
		125	27 /	-50°C	-
	Nominal thic	kness (mm)	Valu	es (%)	
	>	≤		าลx	
Weldability		16		,39	-
	16 40	40		,39	
	40 63	63 125		,40 ,45	-
Durability	Nominal thic			es (%)	
	>	≤	min	max	4
(Chemical composition)		125	AI : 0,02	C : 0,16 Ti : 0,05	1
		120		Mn : 1,60 Cr : 0,30	
				Si : 0,50 Mo : 0,10	
				P : 0,030 Ni : 0,50	
				S: 0,025 Cu: 0,55	
				Nb: 0,05 N: 0,015	
			1	V : 0,10	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-4/05-CPR-14-1 1) Code of the product type: **\$420M** According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Tolerances on dimensions and shape	∩ 1 / ominal thic	H kness (mm)		10034	
dimensions and shape		kness (mm)			
N		kness (mm)			
	>		Values	s (MPa)	
		≤	n	nin	
		16	4	20	
Med La constant	16	40	4	00	
Yield strength	40	63	3	90	
	63	80	3	80	
	80	100	3	70	
	100	140	3	65	
N	ominal thic	kness (mm)	Value	s (MPa)	
	>	≤	min	max	
Tanaila atranath		40	520	680	
Tensile strength	40	63	500	660	
	63	80	480	640	
	80	100	470	630	
	100	140	460	620	
N	Nominal thickness (mm)		Values (%)		EN 10025-1:2004
	>	≤		nin	
Elongation		140		19	
N Impact strength	ominal thic	kness (mm)	Valu	es (J)	
	>	≤		nin	
		140	40 /	-20°C	
N	ominal thic	kness (mm)		es (%)	
	>	≤ ≤		lax	
Weldability		16		43	
	16	40		45	
	40 63	63 140		,46 ,47	
Durability N		kness (mm)		es (%)	
(Chemical	>	≤	min	max	
composition)	-	140	AI : 0,02	C : 0,18 Ti : 0,05	
. ,				Mn : 1,70 Cr : 0,30	
				Si : 0,50 Mo : 0,20	
				P : 0,035 Ni : 0,80	
				S : 0,030 Cu : 0,55 Nb : 0,05 N : 0,025	
				ND: 0,05 N: 0,025 V: 0,12	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-4/07-CPR-13-1 1) Code of the product type: **S460M** According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Perfor	rmance	Harmonised technical specification	
	1/1	4	EN 1	10034	
Tolerances on dimensions and shape					
	Nominal thick	mess (mm)	Values	s (MPa)	
ŀ	>	≤	m	nin	
ſ		16	4	60	
No. 1 1	16	40	4	40	
Yield strength	40	63	4	30	
	63	80	4	10	
	80	100		00	
-	100	140	3	85	
	Nominal thick	(ness (mm)	Values	s (MPa)	
h h	>	≤	min	max	
Toncilo otron <i>e</i> th		40	540	720	
Tensile strength	40	63	530	710	
	63	80	510	690	
	80 100	100 140	500 490	680 660	
	Nominal thick			es (%)	
					EN 10025-1:2004
	>	≤ 140		nin 17	
Elongation		140			
-					
	Nominal thick	kness (mm)	Valu	es (J)	
Impact strength	>	≤		nin	
		140	40 /	-20°C	
	Nominal thick	kness (mm)	Value	es (%)	
	>	≤		lax	
Weldability		16		45	
	16	40		46 47	
	40 63	63 140		,48	
Durability	Nominal thick			es (%)	
(Chemical	>	≤	min	max	
composition)	-	140	AI : 0,02	C : 0,18 Ti : 0,05	
. ,				Mn : 1,70 Cr : 0,30	
				Si : 0,60 Mo : 0,20	
				P: 0,035 Ni : 0,80	
				S : 0,030 Cu : 0,55 Nb : 0,05 N : 0,025	
				ND: 0,05 N: 0,025 V: 0,12	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-4/08-CPR-13-1 1) Code of the product type: **S460ML** According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Perfor	rmance	Harmonised technical specification	
	1/1	1	EN '	10034	
Tolerances on dimensions and shape					
	Nominal thick	mess (mm)	Value	s (MPa)	
•	>	≤	n	nin	
		16	4	60	
Vial d atman with	16	40	4	40	
Yield strength	40	63	4	30	
	63	80	4	10	
	80	100		.00	
	100	125	3	85	
	Nominal thick	mess (mm)	Values	s (MPa)	
•	>	≤	min	max	
-		40	540	720	
Tensile strength	40	63	530	710	
	63	80	510	690	
	80	100	500	680	
	100	125	490	660	
	Nominal thickness (mm)		Values (%)		EN 10025-1:2004
	>	≤		nin	
Elongation		125		17	
•					
Impact strength	Nominal thick	mess (mm)	Valu	es (J)	
impuot otrongtri	>	≤		nin	
		125	27 /	-50°C	
	Nominal thick			es (%)	
MAY - 1 - 1 - 11-12	>	<u>≤</u>		nax 45	
Weldability	16	16 40		,45 ,46	
•	40	63		,40	
•	63	125		,48	
Durability	Nominal thick			es (%)	
(Chemical	>	≤	min	max]
composition)		125	AI : 0,02	C : 0,18 Ti : 0,05	
				Mn : 1,70 Cr : 0,30	
				Si: 0,60 Mo: 0,20	
				P: 0,030 Ni : 0,80 S: 0,025 Cu : 0,55	
				Nb: 0,05 N: 0,025	
				V : 0,12	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-4/13-CPR-20-1 1) Code of the product type: **\$500M** According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Perfor	mance	Harmonised technical specification	
	1/1	4	EN 1	10034	
Tolerances on dimensions and shape					
	Nominal thicl	kness (mm)	Values	s (MPa)	
•	>	≤	m	nin	
		16	5	00	
Viold strongth	16	40	4	80	
Yield strength	40	63	4	60	
	63	80	4	50	
	80	100		50	
	100	140	4	50	
	Nominal thick	kness (mm)	Values	s (MPa)	
•	>	≤	min	max	
Tensile strength		40	580	760	
rensile strengti	40	63	580	760	
	63	80	580	760	
	80 100	100 140	560 560	750 750	
	Nominal thickness (mm)		Values (%)		
			min		EN 10025-1:2004
•	>	≤ 140		15	
Elongation		140			
launa at atrau att	Nominal thick	mess (mm)	Valu	es (J)	
Impact strength	>	≤		nin	
		140	40 /	-20°C	
	Nominal thick	kness (mm)	Value	es (%)	
	>	≤		ax	
Weldability	40	16		,47	
	16 40	40 63	0,47 0,47		
	63	140		,48	
Durability	Nominal thick			es (%)	
(Chemical	>	≤	min	max]
composition)		140	AI : 0,02	C : 0,16 Ti : 0,05	
				Mn : 1,70 Cr : 0,30	
				Si : 0,60 Mo : 0,20 P : 0,035 Ni : 0,80	
				S : 0,030 Cu : 0,55	
				Nb : 0,05 N : 0,025	
				V : 0,12	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-4/14-CPR-20-1 1) Code of the product type: **\$500ML** According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Perfo	rmance	Harmonised technical specification	
	1/1	ł	EN	10034	-
Tolerances on dimensions and shape					
	Nominal thick	mess (mm)	Value	s (MPa)	
	>	≤	r	nin	
		16	Ę	500	
Vial d atman with	16	40	2	180	
Yield strength	40	63	2	160	
	63	80		150	
	80	100		150	
	100	125	4	450	
	Nominal thick	mess (mm)	Value	es (MPa)	
Ī	>	≤	min	max	
Tensile strength		40	580	760	
rensile strengti	40	63	580	760	
	63	80	580	760	
-	80	100	560 560	750 750	
	100 Nominal thick	125 (ness (mm)		rso les (%)	
-					EN 10025-1:2004
	>	≤ 125		nin 15	
Elongation		125		10	
Ī					
	Nominal thick	mess (mm)	Valu	ies (J)	
Impact strength	>	≤	r	nin	
		125	27 /	-50°C	
	Nominal thick	mess (mm)	Valu	ies (%)	
	>	≤		nax	
Weldability	10	16		0,47	
	16 40	40 63),47),47	
-	63	125),48	
Durability	Nominal thick			ues (%)	
(Chemical	>	≤	min	max	
composition)		125	AI : 0,02	C : 0,16 Ti : 0,05	1
				Mn : 1,70 Cr : 0,30	
				Si : 0,60 Mo : 0,20	
				P: 0,030 Ni : 0,80	
				S : 0,025 Cu : 0,55 Nb : 0,05 N : 0,025	
			1	V : 0,12	I

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-5/01-CPR-13-1 1) Code of the product type: **\$355J0W** According EN 10025-5

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Per	formance	Harmonised technical specification
1/1	1	EN 10034		
Nominal thick	mess (mm)	Valu	ues (MPa)	
>	≤		min	
	16		355	
16	40		345	
40	63		335	
Nominal thick	mess (mm)	Valu	ues (MPa)	
>	≤	min	max	
=3	40			
40	63	470	630	
Newtraldia				
				EN 10025-1:2004
			22	
40	63		21	
Nominal thick	mess (mm)	Va	alues (J)	
>	≤		min	
	63	2	27 / 0°C	_
		Va		_
>				-
16				-
10	00		0,02	
Nominal thick	mess (mm)	Va	lues (%)	_
>	5	min	max	
	63	Mn : 0,50	C : 0,16 Cr : 0,80	1
		Cu : 0,25	Si : 0,50	
		Cr : 0,40	P:0,040	
			Mn : 1,50 Cu : 0,55	
	Nominal thick > 16 40 > =3 40 Nominal thick > =3 40 Nominal thick > =3 40 Nominal thick > =16 16	Nominal thickness (mm) > \$ 16 40 40 63 - - Nominal thickness (mm) > > \leq =3 40 40 63 - - Nominal thickness (mm) - > \leq =3 40 40 63 - - Nominal thickness (mm) > > \leq 63 - Nominal thickness (mm) > > \leq 63 - Nominal thickness (mm) > > \leq 16 63 Nominal thickness (mm) > > \leq 16 63 Nominal thickness (mm) > > \leq 16 63 Nominal thickness (mm) > > \leq 10 63	I/HENominal thickness (mm)Value>\$164040634063Nominal thickness (mm)Value>\$ <td< td=""><td>I/H EN 10034 I/H EN 10034 Nominal thickness (mm) Values (MPa) > \$ min 16 355 35 16 355 35 16 355 36 40 63 335 Nominal thickness (mm) Values (MPa) Nominal thickness (mm) Values (MPa) > \$ min max 3 40 470 630 40 63 470 630 40 63 470 630 40 63 470 630 40 63 470 630 40 63 21 40 > \$ min max =3 40 22 40 40 63 21 21 Nominal thickness (mm) Values (J) 21 > \$ max 316 0,52 16 0,52 16 63 0,52 16 0,50<</td></td<>	I/H EN 10034 I/H EN 10034 Nominal thickness (mm) Values (MPa) > \$ min 16 355 35 16 355 35 16 355 36 40 63 335 Nominal thickness (mm) Values (MPa) Nominal thickness (mm) Values (MPa) > \$ min max 3 40 470 630 40 63 470 630 40 63 470 630 40 63 470 630 40 63 470 630 40 63 21 40 > \$ min max =3 40 22 40 40 63 21 21 Nominal thickness (mm) Values (J) 21 > \$ max 316 0,52 16 0,52 16 63 0,52 16 0,50<

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-5/02-CPR-13-1 1) Code of the product type: **\$355J2W** According EN 10025-5

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Performance		Harmonised technical specification	
		4	EN	N 10034	
Tolerances on dimensions and shape					
	Nominal thickness (mm)		Values (MPa)		
t t t t t t t t t t t t t t t t t t t	> ≤			min	
		16	355		
Viold of rongth	16	40	345		
Yield strength	40	63		335	
-					
	Nominal thickness (mm)		Values (MPa)		
	>	5	min	max	
Tensile strength	=3	40	470	630	
renone ourongan	40	63	470	630	
	Nominal this	(mm)	Val		-
	Nominal thickness (mm)		Values (%)		EN 10025-1:2004
	>	<u>≤</u> 40	min 22		
Elongation	=3 40	63	22		_
-					_
	Nominal thic	kness (mm)	Va	lues (J)	
Impact strength	Nominal thickness (mm)				
-	>	<u>≤</u> 63	min 27 / -20°C		
	Nominal thickness (mm)		Values (%)		
	>	≤	max		
Weldability		16	0,52		
	16	63	0,52		
Durability	Nominal thickness (mm)		Values (%)		_
(Chemical	>	≤	min	max	
composition)	-	63	Mn : 0,50	C : 0,16	
1		55	Cu : 0,25	Si: 0,50	
			Cr : 0,40	P : 0,035	
				S : 0,035	
				Mn : 1,50	
				Cu : 0,55	
				Cr: 0,80	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-5/03-CPR-13-1 1) Code of the product type: S355K2W According EN 10025-5

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Performance		Harmonised technical specification	
	1/1	Η	EN 10034		
Tolerances on dimensions and shape					
	Nominal thickness (mm)		Valu	Values (MPa)	
	> ≤			min	
		16	355		
Yield strength	16	40	345		
neid strength	40 63			335	
	Nominal thickness (mm)		Values (MPa)		
	>	≤	min	max	
Tensile strength	=3	40	470	630	
, and the second s	40	63	470	630	_
	Nominal thickness (mm)		Values (%)		EN 10025-1:2004
	> ≤		min		EN 10023-1.2004
	=3	40	22		
Elongation	40	63	21		_
					-
Impact strength	Nominal thickness (mm)		Values (J)		
	>	<u>≤</u> 63	min 40 / -20°C		
	Nominal thickness (mm)		Values (%)		
	>	≤	max		
Weldability		16	0,52		
-	16	63	0,52		
Durability	Nominal thickness (mm)		Values (%)		
(Chemical	>	≤	min	max	_
composition)		63	Mn : 0,50	C:0,16	
			Cu : 0,25 Cr : 0,40	Si : 0,50 P : 0,035	
			01.0,40	P : 0,035 S : 0,035	
				Mn : 1,50	
				Cu : 0,55	
				Cr : 0,80	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-5/06-CPR-20-1 1) Code of the product type: **\$460,00W** According EN 10025-5

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Performance		Harmonised technical specification	
	1/1	1	EN 10034		
Tolerances on dimensions and shape					
	Nominal thickness (mm)		Values (MPa)		
-	> ≤			min	
		16	6 460		
Violal atmos with	16			440	
Yield strength	40 63			430	
-					-
	Nominal thickness (mm)		Values (MPa)		
_	>	<u>≤</u>	min	max	_
Tensile strength	=3	40	530	710	-
-	40	63	530	710	-
					_
	Nominal thickness (mm)		Values (%)		EN 10025-1:2004
-	>	≤ 40	min 17		-
Elongation	=3 40	63	16		
-	40	00			
F					
loons at atmospheric	Nominal thickness (mm)		Values (J)		
Impact strength	>	≤	min		
		63	27 / 0°C		
	Nominal thickness (mm)		Values (%)		_
Malalah 114 .	>	≤ 16	max 0.52		-
Weldability	16	63	0,52 0,52		-
	10	03	0,02		
Durability	Nominal thickness (mm)		Values (%)		-
(Chemical	>	≤	min	max	1
composition)		63	Cr: 0,40	C : 0,20 Cr : 0,80	
			Cu : 0,25	Si : 0,65	
				P:0,040	
				S: 0,040	
				N : 0,025 Mn : 1,40	
				Mn : 1,40 Cu : 0,55	1

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-5/07-CPR-20-1 1) Code of the product type: **\$460,J2W** According EN 10025-5

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Performance		Harmonised technical specification	
1/		1	EN 10034		
Tolerances on dimensions and shape					-
	Nominal thickness (mm)		Values (MPa)		
F	> ≤		1	nin	
Γ		16	4	460	
No. 1 1	16			440	
Yield strength	40 63			430	
-					
	Nominal thickness (mm)		Value	es (MPa)	
	>	≤	min	max	
Tensile strength	=3	40	530	710	
	40	63	530	710	-
	Nominal thickness (mm)		Values (%)		
-					EN 10025-1:2004
-	> =3	<u>≤</u> 40	min 17		-
Elongation	=3 40	63	16		
-					-
Impact strength	Nominal thickness (mm)		Values (J)		
impact strength	>	≤	min		
		63	27 / -20°C		
	Nominal thickness (mm)		Values (%)		
Weldability	>	<u>≤</u> 16	max		
weidability	16	63	0,52		-
	10		.,		
Durability	Nominal thickness (mm) Values (%		ies (%)	-	
(Chemical	>	≤	min	max	
composition)		63	Cr: 0,40	C : 0,20 Cr : 0,80	
			Cu : 0,25	Si : 0,65	
				P:0,035	
				S : 0,035 N : 0,025	
				N : 0,025 Mn : 1,40	
				Cu : 0,55	

Declaration of Performance The Construction Product (Amendment etc.) (EU Exit) Regulations 2020 No 1359 No AMDI-5/08-CPR-20-1 1) Code of the product type: **S460K2W** According EN 10025-5

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer: To be used in welded, bolted and riveted structures

> 2) ArcelorMittal Belval and Differdange S.A Site of Differdange Rue Emile Mark L-4503 Differdange (G.D. of Luxembourg) sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product: System 2+

Notified factory production control certification body No. 0038 Lloyd's Register performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Christophe Houyoux

Quality Manager

Haypert

Essential characteristic		Performance		Harmonised technical specification
1/1	1	EN 10034		
Nominal thickness (mm)		Values (MPa)		
> ≤			min	
	16	460		
16	40			
40	63		430	
Nominal thickness (mm)		Values (MPa)		
>	≤	min	max	
=3	40			
40	63	530	710	
				EN 10025-1:2004
		17		
40	63	16		
Nominal thickness (mm)		Values (J)		
>	≤	min		
	63	40 / -20°C		_
Nominal thickness (mm)		Values (%)		
>				
16				-
10	00	-10-		
Nominal thickness (mm)		Values (%)		
>	≤	min	max	1
	63	Cr: 0,40	C: 0,20 Cr: 0,80	
		Cu : 0,25	Si : 0,65	
			P:0,035	
			Mn : 1,40 Cu : 0,55	
	Nominal thick > 16 40 > =3 40 Nominal thick > 16	Nominal thickness (mm) > \$ 16 40 40 63 - - Nominal thickness (mm) > > \leq =3 40 40 63 - - Nominal thickness (mm) - > \leq =3 40 40 63 - - Nominal thickness (mm) > > \leq 63 - Nominal thickness (mm) > > \leq 63 - Nominal thickness (mm) > > \leq 16 63 Nominal thickness (mm) $<$ <td>I/H EN Nominal thickness (mm) Value > \$ 16 16 16 40 40 63 Nominal thickness (mm) Value > \$ Nominal thickness (mm) Value > \$ min =3 40 530 40 63 530 40 63 530 Nominal thickness (mm) Value > \$ \$ =3 40 63 Nominal thickness (mm) Value > \$ \$ =3 40 63 Nominal thickness (mm) Value > \$ \$ =3 40 63 0 0 0 Nominal thickness (mm) Value > \$ \$ 16 63 16 16 63 16 16 63 16</td> <td>I/H EN 10034 I/H EN 10034 I I Nominal thickness (mm) Values (MPa) > \$ min 16 460 - 16 460 - 40 63 430 Nominal thickness (mm) Values (MPa) > \$ min max - - - - Nominal thickness (mm) Values (MPa) - - Nominal thickness (mm) Values (MPa) - - > \$ \$ min max - - - - - Nominal thickness (mm) Values (%) - - > \$ \$ min - - - - - - Nominal thickness (mm) Values (J) - - > \$ \$ \$ \$ \$ 16 0.52 16 0.52 - Nominal thickness (mm) Values (%) -</td>	I/H EN Nominal thickness (mm) Value > \$ 16 16 16 40 40 63 Nominal thickness (mm) Value > \$ Nominal thickness (mm) Value > \$ min =3 40 530 40 63 530 40 63 530 Nominal thickness (mm) Value > \$ \$ =3 40 63 Nominal thickness (mm) Value > \$ \$ =3 40 63 Nominal thickness (mm) Value > \$ \$ =3 40 63 0 0 0 Nominal thickness (mm) Value > \$ \$ 16 63 16 16 63 16 16 63 16	I/H EN 10034 I/H EN 10034 I I Nominal thickness (mm) Values (MPa) > \$ min 16 460 - 16 460 - 40 63 430 Nominal thickness (mm) Values (MPa) > \$ min max - - - - Nominal thickness (mm) Values (MPa) - - Nominal thickness (mm) Values (MPa) - - > \$ \$ min max - - - - - Nominal thickness (mm) Values (%) - - > \$ \$ min - - - - - - Nominal thickness (mm) Values (J) - - > \$ \$ \$ \$ \$ 16 0.52 16 0.52 - Nominal thickness (mm) Values (%) -