

No AMDG-2/01-CPR-13-1

Code of the product type: \$235JR

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ seofranchi

Esse	Essential characteristic		Perfo	mance	Harmonised technical specification	
	L			0056-2		
[1/		EN 10034			
Tolerances on	IP		EN 10024			
dimensions and	L	l	EN 10279			
shape						
	Nominal thic	kness (mm)	Value	s (MPa)		
[>	≤	n	nin		
		16	2	35		
	16	40	2	25		
Yield strength	40	63	2	15		
ŀ	63	80		15	_	
ŀ	80	100		15	_	
ŀ	100	140		95		
ŀ	100	140		00		
	Nominal thic	kness (mm)	Value	s (MPa)		
	>	≤	min	max		
Tensile strength	=3	100	360	510		
rensile strength	100	140	350	500		
	Nominal thickness (mm)		Valu	es (%)	EN 10025-1:2004	
The state of the s	>	≤	min		_	
	=3	40	26			
Elongation	40	63	25			
[63	100	24			
[100	140	22			
	Nominal thic	kness (mm)	Valu	es (J)		
Impact strength	>	≤	n	nin		
ŀ		140		20°C		
	Nominal thic			es (%)		
ŀ	>	≤	m	nax		
Weldability		30		35		
	30	40		35	7	
į	40	140		38		
Durability	Nominal thic	kness (mm)	Valu	es (%)		
· L	>	Kiiess (iiiiii) ≤			\dashv	
(Chemical composition)	,		min	max		
composition)		140		C: 0,17-0,20		
				Mn : 1,40 P : 0,040		
				P: 0,040 Cu: 0,55		
]		S: 0,040		
]		N : 0,012		

No AMDG-2/02-CPR-13-1

1) Code of the product type: \$235J0

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ seofranchi

Essential characteristic		Perfor	mance	Harmonised technical specification	
	L		EN 10	0056-2	оросиновноп
	1/	Н		0034	
Tolerances on	I/H Dierances on IPN		EN 1	0024	
dimensions and	U		EN 1	0279	
shape					
	Nominal thic	kness (mm)	Values	s (MPa)	_
	>	≤	m	nin	
		16	23	35	
	16	40	22	25	
Yield strength	40	63		15	
	63	80		15	
	80	100		15	
	100	140		95	
		. , ,			
Ļ	Nominal thic			s (MPa)	_
-	>	≤	min	max	
Tensile strength	=3 100	100 140	360 350	510 500	_
· · · · · · · · · · · · · · · · · · ·	100	140	350	500	_
	Nominal thickness (mm)		Value	es (%)	EN 10025-1:200
h	>	≤	m	nin	LIV 10023-1.200
	=3	40	26		
Elongation	40	63	25		
	63	100		.4	
-	100	140	22		\exists
	Nominal thic	kness (mm)	Value	es (J)	7
Impact strength	>	≤	m	nin	
		140	27 /	0°C	
	Nominal thic	kness (mm)	Value	es (%)	
	>	≤	m	ах	
Weldability		30		35	
	30	40		35	
	40	140	0,38		_
Durability	Nominal thickness (mm)		Value	es (%)	
(Chemical	>	≤	min	max	╛
composition)		140		C: 0,17	
				Mn : 1,40	
				P: 0,035	
				Cu: 0,55 S: 0,035	

No AMDG-2/03-CPR-13-1

1) Code of the product type: \$235J2

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ seofranchi

Essential characteristic			Performance		Harmonised technical specification
	L		EN 100	56-2	
	1/1		EN 100		
Tolerances on	IPI		EN 10024		
dimensions and	U		EN 102	279	
shape					
	Nominal thic	kness (mm)	Values (МРа)	
	>	≤	min		
		16	235		
NO. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	16	40	225		
Yield strength	40	63	215		7
	63	80	215		7
ŀ	80	100	215		_
T I	100	140	195		
L	Nominal thic	1 1	Values (
-	>	≤	min	max	4
Tensile strength	=3	100	360	510	4
	100	140	350	500	_
•					=
	Nominal thickness (mm)		Values		EN 10025-1:2004
	> =3	≤ 40	min 26		4
Elongation	=3 40	63	25		┥
-	63	100	25		-
	100	140	22		
	Nominal thic	kness (mm)	Values (J)		1
Impact strength	>	≤	min		7
		140	27 / -20)°C	
	Nominal thic	kness (mm)	Values	(%)	
	>	≤	max		
Weldability		30	0,35		
	30	40	0,35		
}	40	140	0,38		
Durability	Nominal thickness (mm)		Values	(%)	7
(Chemical	>	≤	min	max	_
composition)		140	м Р С	: 0,17 ln : 1,40 : 0,030 u : 0,55 : 0,030	

No AMDG-2/04-CPR-13-1

Code of the product type: \$275JR

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ seofranchi

L		E11.400		
	L EN 10056-2		056-2	
I/H EN 10034				
IPN EN 10024				
U		EN 10)279	
Nominal thick	kness (mm)	Values	(MPa)	
>	≤	mii	n	
	16	27:	5	
16	40	26	5	
40	63	25	5	
				\dashv
Nominal thicl	kness (mm)	Values	(MPa)	
>	≤	min	max	
=3	100	410	560	
100	140	400	540	
				\dashv
Nominal thickness (mm)		Values	s (%)	EN 10025-1:2004
>	≤	min		
=3	40	23		
40	63	22		
100	140	19		_
Nominal thic	kness (mm)	Value	s (J)	_
>	≤	mi	n	
	140			
Nominal thick	kness (mm)	Values	s (%)	
>	≤	ma	ıx	
	30	0,4	.0	
30	40	0,4	.0	
40	140	0,42		
Nominal thickness (mm)		Value	s (%)	\dashv
				\dashv
				\dashv
	140			
			Mn : 1,50 P : 0,040	1
				1
			Cu: 0.55	
			Cu : 0,55 S : 0,040	
	Nominal thicl	Nominal thickness (mm) >	Nominal thickness (mm)	Nominal thickness (mm)

No AMDG-2/05-CPR-13-1

1) Code of the product type: \$275J0

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ seofranchi

Essential characteristic			Perform	nance	Harmonised technical specification
	L		EN 10056-2		
	1/	Н	EN 10	0034	
Tolerances on	nces on IPN EN 10024				
dimensions and	Į	J	EN 10279		
shape					
	Nominal thic	kness (mm)	Values	(MPa)	\dashv
	>	≤	mii	n	
		16	27:	5	
	16	40	26	5	_
Yield strength	40	63	25:	5	
!	63	80	24		
!	80	100	23		
	100	140	225		
	Nominal thic	kness (mm)	Values	(MPa)	
		` '		· ,	_
}	> =3	≤ 100	min 410	max 560	-
Tensile strength	100	140	400	540	-
	100	140	400	040	
	Naminal dela	l	Values (%)		7
	Nominal thickness (mm)				EN 10025-1:200
	>	≤	min		_
Elongation	=3	40	23		_
Ĭ,	40	63	22		_
ŀ	63 100	100 140	21 19		\dashv
	Nttat.		V.1	. (1)	
Impact strength	Nominal thic	Kness (mm)	Values (J)		
impaot ou ongai	>	≤ 140	mii 27 / 0		_
	Nominal thic		Values		\dashv
}	>	≤	ma	• •	\dashv
Weldability		30	0,4		
	30	40	0,4		
	40	140	0,42		
Durability	Nominal thickness (mm)		Values	s (%)	
(Chemical	>	≤ (······,	min	max	\dashv
composition)		140		C: 0,18	\dashv
. /				Mn : 1,50	
				P: 0,035	
				Cu: 0,55	
			:	Cu : 0,55 S : 0,035 N : 0,012	

No AMDG-2/06-CPR-13-1

1) Code of the product type: \$275J2

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ seofranchi

Essential characteristic			Perform	nance	Harmonised technical specification
	L		EN 100)56-2	
	I/H EN 10034		0034	1	
Tolerances on	IPN EN 10024		024		
dimensions and	l	J	EN 10)279	
shape					
	Nominal thic	kness (mm)	Values	(MPa)	
	>	≤	mir	n	
		16	275	5	
	16	40	265	5	7
Yield strength	40	63	255	5	7
	63	80	24	5	
	80	100	235		-
•	100	140	225		
	Nominal thic	kness (mm)	Values (MPa)		
	>	≤	min	max	
Tensile strength	=3	100	410	560	
	100	140	400	540	
					╡
	Nominal thickness (mm)		Values		EN 10025-1:2004
	>	≤	min		_
Elongation	=3 40	40	23 22		-
· ·	63	63 100	22 21		-
ŀ	100	140	19		7
lmn a at atran ath	Nominal thic	kness (mm)	Values (J)		
Impact strength	>	≤	mir		
		140	27 / -2	20°C	
	Nominal thic	kness (mm)	Values	s (%)	
	>	≤	ma		
Weldability		30	0,4		_
ļ	30	40	0,4		_
-	40	140	0,42		4
Durability	Nominal thickness (mm)		Values	s (%)	1
(Chemical	>	. ,	min	max	-
composition)		140	C P F	C : 0,18 Mn : 1,50 P : 0,030 Cu : 0,55	
			S	S:0,030	

No AMDG-2/07-CPR-13-1

Code of the product type: \$355JR

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic		Performance		Harmonised technical specification	
	L		EN 10056-2		
[1/1	Н	EN 100	034	
Tolerances on	inces on IPN EN 10024		024		
dimensions and	U		EN 10279		
shape					
	Nominal thic	kness (mm)	Values (MPa)	
Ī	>	≤	min		
		16	355	i	
ŀ	16	40	345		
Yield strength	40	63	335		\dashv
ŀ	63	80	325		\dashv
	80	100	315		-
ŀ	100	140	295		_
ŀ	100	140	200		
	Nominal thic	kness (mm)	Values (MPa)	
ľ	>	≤	min	max	
Tanaila atranath	=3	100	470	630	
Tensile strength	100	140	450	600	
-					\dashv
	Nominal thickness (mm)		Values	(%)	EN 10025-1:200
ľ	>	≤	min		
Elongation	=3	40	22		
Liongation	40	63	21		
L.	63	100	20		
-	100	140	18		
	Nominal thic	kness (mm)	Values	; (J)	
Impact strength	>	≤	min		_
ľ		140	27 / 20		
	Nominal thic	kness (mm)	Values	(%)	
ľ	>	≤	max	(
Weldability		30	0,45	5	
	30	40	0,47	7	
	40	140	0,47		
Durability	ility Nominal thickness (mm)		Values	(%)	\dashv
(Chemical	>	≤ (min)	min		
composition)		140		max :: 0,24	\dashv
composition)		140		i: 0,24	
				i : 0,55 ln : 1,60	
				: 0,040	
				u : 0,55	
			s	: 0,040	
			N	: 0,012	1

No AMDG-2/08-CPR-13-1

1) Code of the product type: \$355J0

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic		Performance		Harmonised technical specification	
	L		EN 10056-2		
I/H			EN 10034		
Tolerances on	IPI		EN 10		
dimensions and	U		EN 10	0279	
shape					
	Nominal thic	kness (mm)	Values	(MPa)	-
	>	≤	mi	in	
		16	35	55	
-	16	40	34	15	
Yield strength	40	63	33		\dashv
-	63	80	32		_
-	80		31		_
-	100	100 140	29		
 	100	140		15	
	Nominal thic	kness (mm)	Values	(MPa)	
	>	≤	min	max	
[=3	100	470	630	
Tensile strength	100	140	450	600	
	Nominal thick	Nominal thickness (mm)		s (%)	EN 10025-1:200
	>	≤	min		_
Elongation	=3	40	22		_
	40	63	21		_
-	63	100	20		_
-	100	140	18		
	Nominal thic	kness (mm)	Value	es (J)	7
Impact strength	>	≤	mi	in	
		140	27 /	0°C	
	Nominal thic	kness (mm)	Value	s (%)	
	>	≤	ma	ax	
Weldability		30	0,4		
	30	40	0,4		
-	40	140	0,47		_
Durability	Nominal thickness (mm)		Value	s (%)	
(Chemical	>	≤	min	max	\dashv
composition)		140		C: 0,20-0,22	
. ′				Si : 0,55	
				Mn : 1,60	
				P:0,035	
				Cu : 0,55	
				S: 0,035	1

No AMDG-2/09-CPR-13-1

1) Code of the product type: \$355J2

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic			Performance		Harmonised technical specification
	L		EN 1	0056-2	· ·
	1/	Н	EN	10034	
Tolerances on	IP	N	EN	10024	
dimensions and	Ĺ	J	EN 10279		
shape					
	Nominal thic	kness (mm)	Value	es (MPa)	_
	>	≤	r	min	
		16	3	355	
	16	40		345	_
Yield strength	40	63		335	-
-	63	80		325	-
	80	100		315	_
-	100	140		295	_
-	100	140		295	_
	Nominal thic	kness (mm)	Value	s (MPa)	
F	>	≤	min	max	_
<u> </u>	=3	100	470	630	
Tensile strength	100	140	450	600	_
	Nominal thickness (mm)		Valu	ies (%)	EN 10025-1:200
	>	≤	min		
Elongation	=3	40	22		
Liongation	40	63	21		
	63	100	20		
L	100	140	18		
	Nominal thic	kness (mm)	Valu	ıes (J)	
Impact strength	>	≤		nin	
-		140		-20°C	
	Nominal thic		Values (%)		
-	>	≤	n	nax	
Weldability	-	30		1,45	
Troidubility	30	40),47	_
	40	140	0,47		
Durability	Nominal thickness (mm)		Valu	ies (%)	
(Chemical	>	≤	min	max	
composition)		140		C: 0,20-0,22	
				Si: 0,55	
				Mn : 1,60	
				Cu : 0,55	
				S:0,030	
				P: 0,030	ı

No AMDG-2/10-CPR-13-1

Code of the product type: \$355K2

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ seofranchi

Essential characteristic		Performance		Harmonised technical specification	
	L		EN 10056-2		
[1/	Н	EN 10	0034	
Tolerances on	1511				
dimensions and	L	U EN 10279			
shape					
	Nominal thic	kness (mm)	Values	(MPa)	-
ľ	>	≤	mi	n	
		16	35	5	
ŀ	16	40	34	.5	
Yield strength	40	63	33		_
	63	80	32		_
	80	100	31		-
ŀ	100	140	29		
ŀ	100	140			
	Nominal thic	kness (mm)	Values	(MPa)	
ļ t	>	≤	min	max	
	=3	100	470	630	
Tensile strength	100	140	450	600	
	Nominal thickness (mm)		Value	s (%)	EN 10025-1:200
ļ t	>	≤	min		
Flammation	=3	40	22		
Elongation	40	63	21		
	63	100	20		
	100	140	18		
	Nominal thic	kness (mm)	Values (J)		7
Impact strength	>	≤	mi		
		140	40 / -20°C		
	Nominal thic	kness (mm)	Value	s (%)	
	>	≤	ma	ax	
Weldability		30	0,4		
	30	40	0,4		
	40	140	0,47		_
Durability	Nominal thickness (mm)		Value	s (%)	
(Chemical	>	≤	min	max	\dashv
composition)		140		C: 0,20-0,22	
· '				Si: 0,55	
				Mn : 1,60	
l					
				Cu : 0,55	
				Cu: 0,55 S: 0,030 P: 0,030	

Declaration of Performance

(according to regulation EU No 305/2011)

Nr AMDG-2/11-CPR-15-1

1) Code of the product type: **\$450J0**

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436
Zakład Badań i Atestacji "ZETOM" im. Prof. F. Stauba w
Katowicach sp. z o.o. performed the initial inspection of the
manufacturing plant and of factory production control and the
continuous surveillance, assessment, and evaluation of
factory production control and issued the certificate of
conformity of the factory production control.

The performance of the product identified in points 1 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2.

Signed for and on behalf of the manufacturer by:

Wojciech Michalczyk

Quality Management Manager Longs

Date: 18.12.2015

Essential characteristic			Pe	erformance	Harmonised technical specification
Tolerances on	Angles EN10056-2				
dimensions and shape		I and H sections	E	EN 10034	
		Tapered Flange I		EN 10024	
		UPE, UPN	E	EN 10279	7
Yield strength	Non	ninal thickness (mm)		lues (MPa)	
· ·	>	≤ ,		min	
		16		450	
	16	40		430	
	40	63		410	
	63	80		390	
	80	100		380	
	100	140		380	
Tensile strength	Non	ninal thickness (mm)	Va	lues (MPa)	
	>	≤	min	max	
	=3	100	550	720	
	100	140	530	700	
Elongation		ninal thickness (mm)	Values (%)		
	>	≤		min	
	=3	40	17		
	40	63	17		EN 10025-1:2004
	63	100		17	
	100	140		17	
Impact strength		ninal thickness (mm)	\	/alues (J)	
	>	≤		min	
		140		27 at 0°C	
Weldability		ninal thickness (mm)	V	alues (%)	
	>	≤		max	_
	00	30		0,47	_
	30 40	40 140		0,49 0,49	_
Durability	. •	ninal thickness (mm)			-
(Chemical composition)	>	illiai ulickiless (Illili) ≤	Values (%)		-
(Chemical composition)		140	C*: 0,23	Cu: 0,60	_
		140	Si: 0,60	S: 0,045	
			Mn : 1,80	N**: 0,027	
			P: 0.045	Inne***	
	* For nomi	nal thickness > 30 mm C: 0,24. For	-,		1
	** The max content of	k. value for nitrogen does not apply 0,015% or if sufficient other N bindi	if the chemical compositing elements are present	tion shows a minimum total Al	

No AMDG-2/12-CPR-20-1

Code of the product type: \$460JR

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic		c	Perfo	rmance	Harmonised technical specification	
	L			0056-2		
	1/	H EN 10034				
Tolerances on	IPI		EN 10024			
dimensions and	U	U EN 10279				
shape						
	Nominal thic	kness (mm)	Value	s (MPa)		
	>	≤	r	nin		
		16	4	160		
V2.1.1.4	16	40	4	140		
Yield strength	40	63		120		
	63	80		100		
	80	100		390		
F	100	140		390	⊣	
	100			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Nominal thic	kness (mm)	Value	es (MPa)		
	>	≤	min	max		
Tensile strength	=3	100	550	720		
-	100	140	530	700	\dashv	
	Nominal thickness (mm)		Valu	ies (%)	EN 10025-1:2004	
	>	≤	min			
Elongation	=3	40	17			
ga	40	63	17		4	
	63	100	17		-	
-	100	140	17		_	
	Nominal thic	kness (mm)	Valu	ues (J)		
Impact strength	>	≤	r	nin	7	
		140	27 /	20°C		
	Nominal thic	kness (mm)	Valu	ies (%)		
	>	≤		nax		
Weldability		30),47	_	
	30	40		,49	_	
-	40	140	0),49	\dashv	
Durability	Nominal thickness (mm)		Valu	ies (%)		
(Chemical	>	≤	min	max		
composition)		140		C: 0,20-0,22		
				Si: 0,55		
				Mn : 1,70	1	
				P: 0,035	1	
				Cu: 0,55	1	
	Į.			S: 0,035		

No AMDG-2/13-CPR-20-1

Code of the product type: \$460J0

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic		Performance		Harmonised technical specification	
L			EN 100)56-2	
[1/1		EN 10		
Tolerances on	IPI		EN 10		
dimensions and	U		EN 10)279	_
shape					
	Nominal thic	kness (mm)	Values	(MPa)	
ľ	>	≤	mii	n	
		16	46	0	
ŀ	16	40	44	0	_
Yield strength	40	63	42		_
	63	80	400		-
}	80	100	39		_
<u> </u>	100	140	39		_
ŀ	100	140		0	_
	Nominal thic	kness (mm)	Values (MPa)		
	>	≤	min	max	
T! 44 -	=3	100	550	720	
Tensile strength	100	140	530	700	
-					_
	Nominal thic	kness (mm)	Values	s (%)	EN 10025-1:200
İ	>	≤	min		
Elemention	=3	40	17		
Elongation	40	63	17		
	63	100	17	7	
[100	140	17	7	
	Nominal thic	kness (mm)	Value	s (J)	
Impact strength	>	< /	mii		_
-		140	27 / 0		-
	Nominal thic		Values		\neg
ŀ	>	≤	ma	X	_
Weldability		30	0,4		
	30	40	0,4		
į	40	140	0,49		
					\dashv
Durability	-		Values		_
(Chemical	>	≤	min	max	_
composition)		140		C: 0,20-0,22	
				Si: 0,55	
				Mn : 1,70 P : 0,035	
				P : 0,035 Cu : 0,55	
				S : 0,035	
				N : 0,025	

No AMDG-2/14-CPR-20-1

Code of the product type: \$460J2

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ seofranchi

Essential characteristic			Perfori	mance	Harmonised technical specification
			EN 10	056-2	
Ī	1/1		EN 1	0034	
Tolerances on	iqi		EN 1		
dimensions and	U		EN 1	0279	
shape					
	Nominal thic	kness (mm)	Values	(MPa)	
[>	≤	m		
		16	46	0	
NO. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	16	40	44	10	
Yield strength	40	63	42	20	
T T	63	80	40	00	
T T	80	100	39		
t	100	140	39		
	Nominal thic	(noss (mm)	Values	(MDa)	
-	>	≤ (IIIII)	min	max	_
<u> </u>	=3	100	550	720	_
Tensile strength	100	140	530	700	_
	Nominal thickness (mm)		Value	es (%)	EN 10025-1:200
<u> </u>	> ≤		m	in	
	=3	40	min 17		_
Elongation	40	63	17		_
	63	100	17		_
ļ	100	140	17		
I	Nominal thic	kness (mm)	Values (J)		7
Impact strength	>	≤	m		
		140	27 / -	20°C	
	Nominal thic	kness (mm)	Value	es (%)	
	>	≤	ma	эх	
Weldability		30	0,4	47	
	30	40	0,4		
-	40	140	0,49		
Durability	Nominal thickness (mm)		Value	es (%)	
(Chemical	>	≤	min	max	-
composition)		140		C: 0,20-0,22	
' "/				Si: 0,55	
				Mn : 1,70	
				P: 0,035	1
				Cu: 0,55 S: 0,035	

No AMDG-2/15-CPR-20-1

Code of the product type: \$460K2

According EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ seofranchi

Esse	ential characteristi	с	Perfori	nance	Harmonised technical specification
	L		EN 10	056-2	
1/		Н	EN 1	0034	
Tolerances on	IPN		EN 1		
dimensions and	U		EN 1	0279	
shape					
	Nominal thic	kness (mm)	Values	(MPa)	
	>	≤	m		
		16	46	60	
V:-1-1 -4	16	40	44	10	
Yield strength	40	63	42	20	
	63	80	40	00	
	80	100	39	90	
	100	140	39	00	
	Nominal thic	kness (mm)	Values	(MPa)	-
-	>	≤ ()	min	max	
	=3	100	550	720	\dashv
Tensile strength	100	140	530	700	\dashv
					=
	Nominal thickness (mm)		Value	s (%)	EN 10025-1:2004
•	> ≤		m	in	
	=3	40	17		
Elongation	40	63	1	7	
	63	100	1		
	100	140	1	7	
Impact strength	Nominal thickness (mm)		Values (J)		
impact strength	>	≤	min		
		140	40 / -	20°C	
	Nominal thic	kness (mm)	Value	s (%)	
	>	≤	ma		
Weldability		30	0,4		_
Į.	30	40	0,4		_
	40	140	0,49		_
Durability	Nominal thickness (mm)		Value	s (%)	
(Chemical	>	≤	min	max	\dashv
composition)		140		C: 0,20-0,22	┑
. /				Si : 0,55	
				Mn : 1,70	
				P:0,035	
				Cu : 0,55	
				S:0,035	1

No AMDG-4/01-CPR-13-1

1) Code of the product type: \$275M According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic			rmance	Harmonised technical specification	
				0056-2	
	1/			10034]
Tolerances on	IP			10024	1
dimensions and	L	J	EN	10279	4
shape					
	Nominal thic	kness (mm)	Value	es (MPa)	1
ļ t	>	≤	r	min	1
Ī		16	2	275	1
ļ l	16	40		265	1
Yield strength	40	63		255	1
ŀ	63	80		245	1
	80	100		245	1
ŀ	100	140		240	1
	Nominal thic	kness (mm)	Value	es (MPa)	
	>	≤	min	max]
Tensile strength		40	370	530	_
renane attength	40	63	360	520	1
L.	63	80	350	510	1
	80	100	350	510	_
	100	140	350	510	4
	Nominal thickness (mm)			ies (%)	EN 10025-1:200
l.	>	≤	min		1
Elongation		140		24	_
-					
Impact strength	Nominal thic	kness (mm)	Valu	ues (J)	
impact strength	>	≤		min	
		140	1	-20°C	4
	Nominal thic	kness (mm)	Valu	ies (%)	
	>	≤		nax	1
Weldability		16),34	4
	16	40),34	4
-	40	63	0,35		-
	63	140	0,38		-
Durability	Nominal thic	kness (mm)	Values (%)		
(Chemical	>	≤	min	max	1
composition)		140	AI: 0,02	C: 0,15 Ti: 0,05	
				Mn: 1,50 Cr: 0,30	
				Si: 0,50 Mo: 0,10	
				P: 0,030 Ni: 0,30 S: 0,030 Cu: 0,55	
				S: 0,030 Cu: 0,55 Nb: 0,05 N: 0,015	
			İ	V: 0,08	1

No AMDG-4/02-CPR-13-1

Code of the product type: \$275ML

According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic			Perfor	mance	Harmonised technical specification
			EN 10	0056-2	
ľ	1/	Н	EN 1	0034	1
Tolerances on	IP			0024]
dimensions and	U		EN 1	0279	1
shape					
	Nominal thic	kness (mm)	Values	s (MPa)	1
	>	≤	m	nin	
		16	2	75	
Violal atmoments	16	40	20	65	1
Yield strength	40	63	2	55	7
Ī	63	80	24	45	7
Ī	80	100	24	45]
ļ	100	140	24	40	-
	Nominal thic	kness (mm)	Values	s (MPa)	
ŀ	>	≤	min	max	1
		40	370	530	1
Tensile strength	40	63	360	520]
	63	80	350	510]
L	80	100	350	510	_
	100	140	350	510	4
	Nominal thickness (mm)		Value	es (%)	EN 10025-1:200
	>	≤	min 24		
Elongation		140	2	24	_
					_
	Nominal thic	kness (mm)	Valu	es (J)	
Impact strength	>	≤	min		
		140	27 / -	27 / -50°C	
	Nominal thic	kness (mm)	Value	es (%)	
	>	≤		ax]
Weldability		16	· ·	34	1
	16	40		34	1
-	40	63	· ·	35	-
D b ilite .	63	140	0,38		1
Durability	Nominal thic		Values (%)		_
(Chemical	>	≤	min	max	-
composition)		140	AI: 0,02	C: 0,15 Ti: 0,05 Mn: 1,50 Cr: 0,30	
				Mn: 1,50 Cr: 0,30 Si: 0,50 Mo: 0,10	
				P: 0,030 Ni: 0,30	1
				S: 0,025 Cu: 0,55	
			1	Nb: 0,05 N: 0,015	1
			1	V:0,08	1

No AMDG-4/03-CPR-13-1

1) Code of the product type: \$355M

According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic		Perfor	mance	Harmonised technical specification
L		EN 10	056-2	·
1/	Н	EN 1	0034]
]
L	J	EN 1	0279	
Nominal thic	kness (mm)	Values	в (МРа)	
>	≤	m	in	1
	16	35	55	
16	40	34	45	1
40	63	33	35	1
				1
				1
100	140			
Nominal thic	kness (mm)	Values	(MPa)	
	. ,			
				1
40				1
				1
100	140	430	590	j
Nominal thickness (mm)		Value	es (%)	EN 10025-1:200
>	≤	min		1
	140	22]
Nominal thic	kness (mm)	Value	es (J)	
>	≤]
	140	40 / -	20°C	
Nominal thic	kness (mm)	Value	es (%)	
		max		1
>	≤			
	16	0,	39	1
16	16 40	0, 0,	39 39	
16 40	16 40 63	0, 0,	39 39 40	
16 40 63	16 40 63 140	0, 0, 0,	39 39 40 45	
16 40 63 Nominal thic	16 40 63 140 kness (mm)	0, 0, 0, 0, Value	39 39 40 45 es (%)	
16 40 63	16 40 63 140 kness (mm) ≤	0, 0, 0, 0, Value	39 39 40 45 9s (%) max	
16 40 63 Nominal thic	16 40 63 140 kness (mm)	0, 0, 0, 0, Value	39 39 40 45 98 (%) max C: 0,16 Ti: 0,05	
16 40 63 Nominal thic	16 40 63 140 kness (mm) ≤	0, 0, 0, 0, Value	39 39 40 45 85 (%) max C:0,16 Ti:0,05 Mn:1,60 Cr:0,30	
16 40 63 Nominal thic	16 40 63 140 kness (mm) ≤	0, 0, 0, 0, Value	39 39 40 45 98 (%) max C: 0,16 Ti: 0,05	
16 40 63 Nominal thic	16 40 63 140 kness (mm) ≤	0, 0, 0, 0, Value	39 39 40 45 es (%) max C:0,16 Ti:0,05 Mn:1,60 Cr:0,30 Si:0,50 Mo:0,10	
	Nominal thic Nomi	L I/H IPN U	L	L

No AMDG-4/04-CPR-13-1

Code of the product type: \$355ML

According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic		Perfo	rmance	Harmonised technical specification	
	L		EN 1	0056-2	
[1/	Н	EN ·	10034	
Tolerances on	IP			10024	
dimensions and	Ĺ	J	EN ·	10279	
shape					
	Nominal thic	kness (mm)	Value	s (MPa)	-
ľ	>	≤	n	nin	1
		16	3	355	
	16	40	3	345	
Yield strength	40	63	3	335	1
ŀ	63	80		325	
ŀ	80	100		325	1
	100	125		320	
	Nominal thic	kness (mm)	Value	s (MPa)	1
-				<u> </u>	4
-	>	≤ 40	min 470	max 630	4
Tensile strength	40	63	450	610	-
ŀ	63	80	440	600	-
ŀ	80	100	440	600	-
	100	125	430	590	
	Nominal thickness (mm)		Valu	es (%)	EN 10025-1:200
ļ l	>	≤	min		1
Elongation		125	22		1
]
l	Nominal thic	kness (mm)	Valu	ies (J)	1
Impact strength	>	≤		nin	
		125	27 /	27 / -50°C	
	Nominal thic	kness (mm)	Valu	es (%)	
	>	≤		nax	
Weldability		16		,39	_
	16	40		,39	
	40	63		,40	4
	63	125	0,45		4
Durability	Nominal thic		Values (%)		
(Chemical	>	≤	min	max	4
composition)		125	AI: 0,02	C: 0,16 Ti: 0,05	
				Mn: 1,60 Cr: 0,30	
				Si: 0,50 Mo: 0,10 P: 0,030 Ni: 0,50	
				S: 0,025 Cu: 0,55	
				Nb : 0,05 N : 0,015	
		I	1	V: 0,10	

No AMDG-4/05-CPR-15-1

1) Code of the product type: \$420M

According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic			rmance	Harmonised technical specification
L		EN 1	0056-2	
1/	Н	EN	10034]
olerances on IPN				
U		EN	10279	4
Nominal thic	kness (mm)	Value	es (MPa)	1
>	≤	r	min	1
	16	4	120	7
16	40	4	100	1
				1
				1
				1
100	140			1
Nominal thic	kness (mm)	Value	es (MPa)	1
				4
				1
40				1
				1
80	100	470	630	1
100	140	460	620]
Nominal thickness (mm)		Valu	ies (%)	EN 10025-1:200
>	≤	min]
	140		19	-
]
Nominal thic	kness (mm)	Valu	ues (J)	
>	≤	r	min	1
	140	40 /	-20°C]
Nominal thic	kness (mm)	Valu	ies (%)	
>	≤]
				_
				_
			,	4
				1
				4
,				-
	140	AI : U,UZ		1
			Si: 0,50 Mo: 0,20	
		i .	P: 0,035 Ni: 0,80	
			P: 0,035 NI: 0,80	
			S: 0,030 Cu: 0,55	
	L I/I IPI L I/H IPN U	L	L	

No AMDG-4/06-CPR-15-1

Code of the product type: \$420ML

According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic		Perfo	ormance	Harmonised technical specification	
		-		0056-2	
	1/			10034]
Tolerances on	IP			10024	1
dimensions and	ι	J	EN	10279	4
shape					
	Nominal thic	kness (mm)	Value	es (MPa)	1
ļ t	>	≤		min	1
Ī		16	4	420	1
ļ l	16	40	-	400	1
Yield strength	40	63		390	1
ŀ	63	80		380	1
	80	100		370	1
ŀ	100	125		365	1
]
	Nominal thic	kness (mm)	Value	es (MPa)	
ľ	>	≤	min	max]
Tanaila atranath		40	520	680]
Tensile strength	40	63	500	660	
	63	80	480	640]
l.	80	100	470	630	1
	100	125	460	620	-
	Nominal thickness (mm)			ıes (%)	EN 10025-1:200
	>	≤	min		_
Elongation		125		19	_
					-
Impact strength	Nominal thic	kness (mm)	Val	ues (J)	
impact strength	>	≤		min	4
		125	27 /	-50°C	4
	Nominal thic	kness (mm)	Valu	ıes (%)	
	>	≤		nax]
Weldability		16),43	1
	16	40),45	4
ŀ	40 63	63),46	-
		125	0,47		1
Durability	Nominal thic	kness (mm)	Values (%)		
(Chemical	>	≤	min	max	
composition)	<u> </u>	125	AI: 0,02	C: 0,18 Ti: 0,05	
				Mn: 1,70 Cr: 0,30	
				Si: 0,60 Mo: 0,20	
				P: 0,030 Ni: 0,80 S: 0,025 Cu: 0,55	
				S: 0,025 Cu: 0,55 Nb: 0,05 N: 0,025	
		I		V: 0,12	

No AMDG-4/07-CPR-15-1

1) Code of the product type: S460M

According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ seofranchi

Essential characteristic		Perf	ormance	Harmonised technical specification	
L				10056-2	
Tolerances on IP				10034	
				10024	
dimensions and	L	J	EN	10279	
shape					
	Nominal thic	kness (mm)	Valu	es (MPa)	1
ľ	>	≤		min	1
		16		460	
	16	40		440	
Yield strength	40	63		430	1
ŀ	63	80		410	-
ŀ	80	100		400	-
ŀ	100	140		385	-
ŀ	100	140		303	-
	Nominal thic	kness (mm)	Valu	es (MPa)	1
ŀ	>	≤	min	max	1
		40	540	720	1
Tensile strength	40	63	530	710	1
ľ	63	80	510	690	1
ľ	80	100	500	680	1
	100	140	490	660	
	Nominal thickness (mm)		Val	ues (%)	EN 10025-1:2004
	>	≤	min		
Elongation		140		17	1
					-
Impact strength	Nominal thic	kness (mm)	Val	lues (J)]
impuot ottorigui	>	≤		min	
		140	40	/ -20°C	4
	Nominal thic			ues (%)	
	>	≤		max	4
Weldability		16		0,45	4
-	16	40		0,46	-
	40 63	63 140		0,47	4
			0,48		-
Durability	Nominal thic	kness (mm)	Values (%)		
(Chemical	>	≤	min	max	1
composition)		140	AI: 0,02	C: 0,18 Ti: 0,05	
				Mn: 1,70 Cr: 0,30	
				Si: 0,60 Mo: 0,20	
				P: 0,035 Ni: 0,80	
				S: 0,030 Cu: 0,55	
l l				Nb: 0,05 N: 0,025	

No AMDG-4/08-CPR-15-1

Code of the product type: \$460ML

According EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

ArcelorMittal Poland S.A. al. J. Piłsudskiego 92
41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66
Fax:+48 32 776 82 00
sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic		Perfo	rmance	Harmonised technical specification	
	L		EN 1	0056-2	
	1/	Н	EN ·	10034	
Tolerances on	IP			10024	
dimensions and	Ĺ	J	EN ·	10279	
shape					
	Nominal thic	kness (mm)	Value	s (MPa)	-
ľ	>	≤	n	nin	1
		16	4	160	
	16	40	4	40	
Yield strength	40	63	4	130	1
ŀ	63	80		10	
ŀ	80	100		100	1
	100	125		85	
	Nominal thic	kness (mm)	Value	s (MPa)	1
		≤	min	max	-
}	>	40	540	720	-
Tensile strength	40	63	530	710	-
ŀ	63	80	510	690	-
ŀ	80	100	500	680	1
	100	125	490	660	
	Nominal thickness (mm)		Valu	es (%)	EN 10025-1:200
ľ	>	≤	min		
Elongation		125		17	1
]
Impost strongth	Nominal thic	kness (mm)	Valu	ies (J)	1
Impact strength	>	≤		nin	
		125	27 /	-50°C	4
	Nominal thic	kness (mm)	Valu	es (%)	
	>	≤		nax	
Weldability		16		,45	_
<u> </u>	16	40		,46	4
-	40	63	0,47		-
D b 1116 .	63	125	0,48		-
Durability	Nominal thic		Values (%)		
(Chemical	>	≤	min	max	4
composition)		125	AI: 0,02	C: 0,18 Ti: 0,05	
				Mn: 1,70 Cr: 0,30 Si: 0,60 Mo: 0,20	
				P: 0,030 Ni: 0,80	
				S: 0,025 Cu: 0,55	
				Nb : 0,05 N : 0,025	
				V : 0,12	

No AMDG-5/01-CPR-15-1

1) Code of the product type: \$355J0W

According EN 10025-5

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic		Performance		Harmonised technical specification	
L			EN	10056-2	
	1/			N 10034	
olerances on IPN		N	EN	N 10024	
dimensions and	l	J	EN	N 10279	
shape					
	Nominal thic	kness (mm)	Valu	ues (MPa)	1
ŀ	>	≤		min	1
ľ		16		355	1
ŀ	16	40		345	-
Yield strength	40	63	+	335	†
					}
•	Nominal thic	kness (mm)	Valu	ies (MPa)	-
ļ.					-
-	>	≤	min	max	_
Tensile strength	=3 40	40 63	470 470	630 630	-
•	40	00	470	000	1
•	Nominal thic	kness (mm)	Va	lues (%)	1
					EN 10025-1:200
-	>	≤	min		_
Elongation	=3 40	40 63	22 21		1
					1
Impost strongth	Nominal thic	kness (mm)	Va	lues (J)	1
Impact strength	>	≤		min	
		63	2	7 / 0°C	
	Nominal thic	kness (mm)	Va	lues (%)	
ľ	>	≤		max	1
Weldability		16		0,52	
	16	63		0,52	4
-					1
Durability	Nominal thic	kness (mm)	Values (%)		
(Chemical	>	≤	min	max	
composition)		63	Mn: 0,50	C: 0,16 Cr: 0,80	
			Cu: 0,25	Si: 0,50	
			Cr: 0,40	P:0,040	
				S:0,040	
				N: 0,012	
		I	1	Mn : 1,50	1

No AMDG-5/02-CPR-15-1

1) Code of the product type: \$355J2W

According EN 10025-5

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic		Performance		Harmonised technical specification	
	L		EN 1	EN 10056-2	
	I/H			10034	
Tolerances on IPN		N	EN 10024		
dimensions and	U		EN 10279		
shape					
	Nominal thickness (mm)		Values (MPa)		
	>	≤	min		7
		16	355		
ŀ	16	40	345		
Yield strength	40	63	335		
-					
	Nominal thickness (mm)		Values (MPa)		
}	>	≤	min	max	\dashv
-	=3	40	470	630	_
Tensile strength	40	63	470	630	_
					7
	Nominal thickness (mm)		Values (%)		EN 10025-1:200
-			min		EN 10025-1.200
	> =3	≤ 40	min 22		
Elongation	40	63	21		
					7
I	Nominal thic	kness (mm)	Values (J)		
Impact strength	>	≤	min		_
[63	27 / -20°C		
	Nominal thic		Values (%)		
	>	≤	max		
Weldability		16	0,52		
	16	63	0,52		
Durability	Nominal thic	kness (mm)	Valu	ıes (%)	_
(Chemical	> ≤		min max		
composition)	•	63	Mn : 0,50	C: 0,16	
		00	Cu: 0,25	Si: 0,50	Ĭ
			Cr : 0,40	P: 0,035	
			,	S: 0,035	1
				Mn : 1,50	1
				Cu : 0,55	1
			ſ	Cr: 0,80	I

No AMDG-5/04-CPR-15-1

1) Code of the product type: \$235J0W

According EN 10025-5

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic		Performance		Harmonised technical specification	
	L		EN 1	10056-2	
[I/H		EN 10034		
Tolerances on IPN		EN 10024]	
dimensions and	U		EN 10279		
shape					
	Nominal thickness (mm)		Values (MPa)		1
	>	≤	min		1
ļ		16	235		1
ŀ	16	40			1
Yield strength			225 215		
	40	63		213	1
	Naminal this		Value	(MD-)	
Į.	Nominal thic		1	es (MPa)	4
	>	≤	min	max	4
Tensile strength	=3	40	360	510	1
Ĭ	40	63	360	510	
	Naminal this	I	Wall	(0/)	
	Nominal thickness (mm)		Values (%)		EN 10025-1:200
	>	≤	min		4
Elongation	=3 40	40 63	26 25		
					-
	Nominal thickness (mm)		Values (J)		1
Impact strength	>	≤	min]
		63	27 / 0°C		4
	Nominal thickness (mm)		Values (%)		
[>	≤	max		4
Weldability		16	0,44		1
	16	63	0,44		
Durability	Nominal this	knose (mm)	Val	uos (%/)	
	Nominal thic		Values (%)		4
· L		≤	min	max	1
(Chemical	>				
· L	>	63	Mn: 0,20	C: 0,13 P: 0,040	
(Chemical	<u> </u>		Cu: 0,25	Si: 0,40	
(Chemical	>			Si : 0,40 Mn: 0,60	
(Chemical	>		Cu: 0,25	Si : 0,40 Mn: 0,60 Cu:0,55	
(Chemical	>		Cu: 0,25	Si : 0,40 Mn: 0,60	

No AMDG-5/05-CPR-15-1

1) Code of the product type: \$235J2W

According EN 10025-5

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

2) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 sections.arcelormittal.com

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 ZETOM performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in point 1 is in conformity with the declared performance in the table. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 2. Signed for and on behalf of the manufacturer by:

Tomasz Szafrański

Manager of Quality Management – Longs

+ section li

Essential characteristic		Performance		Harmonised technical specification	
	L		EN 10056-2		
	I/H		EN 10034 EN 10024		
Tolerances on IPN					
dimensions and	U		EN 10279		
shape					
	Nominal thickness (mm)		Values (MPa)		
	>	≤	min		
Ī		16		235	
ŀ	16	40	225		_
Yield strength	40	63	215		
-					\exists
	Nominal thickness (mm)		Values (MPa)		7
}	>	≤	min	max	\dashv
-	=3	40	360	510	_
Tensile strength	40	63	360	510	
	Nominal thickness (mm)		Values (%)		EN 10025-1:200
ŀ	>	≤	min		
ŀ	=3	40	26		
Elongation	40	63	25		
Impact strength	Nominal thickness (mm)		Values (J)		
	>	≤	min		-
		63	27 / -20°C		⊣
	Nominal thickness (mm)		Values (%)		
	>	≤	max		
Weldability	10	16	0,44		
	16	63	0,44		
Durability	Nominal thic	kness (mm)	Values (%)		
(Chemical	>	\	min	max	\exists
composition)		63	Mn: 0,20	C: 0,13	
			Cu: 0,25	Si: 0,40	
			Cr: 0,40	Mn: 0,60	
				Cu:0,55	
				Cr: 0,80 S: 0,035	