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Design of single-span beams for SLS and ULS using 
semi-continuous beam-to-column joints
Part 1: Beams with constant bending stiffness and joints according to EN 1993-1-8

deflection, natural frequency and distribution of the inter-
nal forces in a single-span floor beam with constant bend-
ing stiffness and subjected to a uniformly distributed load. 
The formulae derived can help engineers, practitioners and 
students to reach a better understanding of the influence 
of semi-continuous joints on the beam behaviour at ULS 
and SLS. The analytical equations given were used to de-
termine factors, thus allowing quick, easy and safe applica-
tion. Further contributions are planned, covering the use 
of semi-continuous joints for beams with partially constant 
stiffness (composite beams) and composite beam-to-col-
umn joints.

2  Global analysis

In a global analysis, the effects of the behaviour of the 
joints on the distribution of internal forces within a 
structure, and on the overall deformations of the struc-
ture, should generally be taken into account. However, 
as these effects are sufficiently small for nominally 
pinned and rigid/full-strength joints, they may therefore 
be neglected. Three basic methods of global analysis 
 exist:

Elastic global analysis
The distribution of the internal forces within the structure 
only depends on the stiffness of the members in the struc-
ture. Therefore, joints should be classified according to 
their stiffness. In the case of a semi-rigid joint, the rota-
tional stiffness Sj corresponding to the bending moment 
Mj,Ed should generally be used in the analysis. As a simpli-
fication, the rotational stiffness may be taken as Sj,ini/η in 
the analysis for all values of the moment Mj,Ed ≤ Mj,Rd, 
where a value of 2.0 for the stiffness modification coeffi-
cient η can be used for typical beam-to-column joints. For 
other types of joint, see Table 5.2 in [1]. If Mj,Ed does not 
exceed 2/3 of Mj,Rd, the initial rotational stiffness Sj,ini may 
be used in the global analysis.

Rigid–plastic global analysis
Using rigid–plastic global analysis, the distribution of the 
internal forces within the structure only depends on the 
strength of the members in the structure. Therefore, joints 
should be classified according to their strength. The rota-
tional capacity of a joint should be sufficient to accommo-
date the rotations resulting from the analysis.

This article explains a method for determining how semi-continu-
ous joints influence the deflection, natural frequency and bending 
moment distribution of single-span beams with constant inertia 
under uniformly distributed load. The method is adequate for sim-
ple hand calculations, allowing the structural engineer to assess 
potential savings already in the pre-design phase. Further, the 
economical potential of semi-continuous joints according to 
EN 1993-1-8 [1] is demonstrated by an application example.

1  Introduction

Modern construction demands long-span structures that 
allow huge spaces free from columns, easily convertible for 
future use. Further, the structures have to be economic, 
which requires low material consumption and simple erec-
tion processes, and they have to be sustainable. To satisfy 
such demand for economic structures with long beam 
spans, floor beams need a high loadbearing resis tance and 
stiffness. The utilization of high-strength steel grades fulfils 
the requirement of a high loadbearing resis tance, but it 
does not improve the bending stiffness. It is the activation 
of a composite action between steel beam and concrete 
slab that increases the beam stiffness significantly [2], [3]; 
further optimization of the floor beam cross-section can be 
achieved by using semi-continuous beam-to-column joints. 
Semi-continuous joints influence the distribution of the 
bending moment along the beam, leading to the desired 
decrease in the beam deflection and increase in the natural 
frequency of the beam in comparison with simple, hinged 
beam-to-column joints.

Design rules for semi-continuous beam-to-column 
joints in steel are given in [1]. Standard design software 
allows the moment–rotation characteristic of the joint to 
be quickly determined. But to assess the influence of those 
joints on the beam behaviour at ULS and SLS, the mo-
ment–rotation characteristic has to be implemented in the 
global analyses, which requires additional effort by the 
structural engineer.

This article gives formulae that allow easy determina-
tion of the influence of semi-continuous joints on the beam 
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provided that the approximate curve lies entirely below the 
design moment–rotation characteristic.

3  Economical structures with semi-continuous joints

As shown in section 2, the type of beam-to-column joint 
has a significant influence on the distribution of the inter-
nal forces along the beam and, consequently, on the beam 
design. Whereas nominally pinned beam-to-column joints 
lead to a higher bending moment at mid-span, they are 
popular in buildings due to their low fabrication cost. A 
comparison of the bending moments for simple, hinged 
beam-to-column joints with fully rigid joints is given in 
Fig. 2. The rotational stiffness of the semi-continuous 
joint is represented at its adjacent support A and B by a 
rotational spring Sj,A and Sj,B respectively. As shown, fully 
rigid joints reduce the bending moment at mid-span by a 
factor of three by creating a bending moment at the sup-
ports. Hence, they lead to a more economic distribution 
of the internal forces along the beam span, enabling the 
use of a smaller beam section and thus reducing material 
consumption and costs. On the other hand, however, the 
fabrication costs for fully rigid joints are much higher 
than that for pinned joints. The economic optimum be-
tween fabrication and material costs is achieved by using 
semi-continuous joints, see Fig. 3. Semi-continuous joints 
allow for the transmission of a bending moment via the 
joint and for a certain rotation of the joint, which – com-
pared with rigid joints – leads to a higher bending mo-
ment at mid-span, requiring a bigger beam section. But 
they are much more economic than rigid joints. An opti-
mum (= minimum total cost) has to be calculated for each 
structure individually.

Elastic–plastic global analysis
The distribution of the internal forces within the structure 
depends on the stiffness and strength of the structural 
members. Therefore, joints should be classified according 
to both stiffness and strength. The moment–rotation char-
acteristic of the joints should be used to determine the 
distribution of internal forces. As a simplification to the 
non-linear moment–rotation behaviour of a joint, a bi-lin-
ear design moment–rotation characteristic may be adopted, 
see Fig. 1. For the determination of the stiffness coefficient 
η, see Table 5.2 in [1].

The appropriate type of joint model should be deter-
mined from Table 1, depending on the classification of the 
joint and on the chosen method of analysis. The design 
moment–rotation characteristic of a joint used in the anal-
ysis may be simplified by adopting any appropriate curve, 
including a linearized approximation (e.g. bi- or tri-linear), 

ϕj

Mj

Mj,Rd

Sj,ini/η

ϕCd

Fig. 1. Simplified bi-linear design moment–rotation charac-
teristic for elastic–plastic global analysis

Table 1. Type of joint model for global analysis according to [1]

Method of global analysis Classification of joint

Elastic Nominally pinned Rigid Semi-rigid

Rigid-Plastic Nominally pinned Full-strength Partial-strength

Elastic-Plastic Nominally pinned Rigid and full-strength
Semi-rigid and partial-strength

Semi-rigid and full-strength
Rigid and partial-strength

Type of joint model Simple Continuous Semi-continuous

q = const.

L

EI=constant

Sj,A Sj,B

Sj,A Sj,B

Sj,A Sj,B

Sj,A= Sj,B= 0 → hinged joint

Sj,A= Sj,B= ∞ → rigid joint

Structural System Bending Moment Distribution

MEd = 3 qL2/24

MEd = - 2 qL2/24

MEd = qL2/24

Fig. 2. Bending moment distribution for nominally pinned and rigid joints

05_01_15_201610007_Braun.indd   2 28.01.16   13:55



M. Braun/J. Duarte da Costa/R. Obiala/C. Odenbreit · Design of single-span beams for SLS and ULS using semi-continuous beam-to-column joints

3Steel Construction 9 (2016), No. 1 (reprint)

where:
Kb = 8 for frames where the bracing system reduces the 

horizontal displacement by at least 80 % 
E elastic modulus of beam material
Ib second moment of area of beam
Lb beam span (distance between centres of supporting col-

umns)

Nominally pinned joints transmit the internal forces with-
out developing significant moments and they should be 
capable of accepting the resulting rotations under the de-
sign loads. For rigid joints it is assumed that their rota-
tional behaviour has no significant influence on the distri-
bution of internal forces. Semi-rigid joints have a rotational 
stiffness that allows the transmission of a moment based 
on their design moment–rotation characteristic and their 
initial joint stiffness Sj,ini, see Fig. 5.

Classification by strength
According to its strength, a joint may be classified as full-
strength, nominally pinned or partial-strength by compar-
ing its design moment resistance Mj,Rd with the design 
moment resistance of the members it connects, see Fig. 6. 
Nominally pinned joints transmit the internal forces with-
out developing significant moments and should be capable 
of accepting the resulting rotations under the design loads. 
A joint may be classified as nominally pinned if its design 
moment resistance Mj,Rd is not greater than 0.25 times the 
design moment resistance required for a full-strength joint, 
provided it also has sufficient rotational capacity. A joint 
may be classified as full-strength if it meets the criteria 
given in Fig. 6. A joint may be classified as a partial-strength 
joint if it does not meet the criteria for a full-strength or a 
nominally pinned joint.

Classification by rotational capacity
Using rigid–plastic global analysis and with the joint at a 
plastic hinge location, then for joints with a bending resist-
ance Mj,Rd < 1.2 times the design plastic bending moment 
Mpl,Rd of the cross-section of the connected member, the 
rotational capacity of the joint has to be checked. If the 
design resistance Mj,Rd of a bolted joint is not governed by 
the design resistance of its bolts in shear or the design re-
sistance of the welds and local instability does not occur, 
it may be assumed to have adequate rotational capacity for 
plastic global analysis. For more details, see 6.4 of [1] and 

4 Joint design according to EN 1993-1-8
4.1 Design moment–rotation characteristic of a joint

A joint is classified using its design moment–rotation 
curve, which is characterized by its rotational stiffness Sj, 
its design moment resistance Mj,Rd with corresponding ro-
tation φXd and its design rotational capacity φCd, see Fig. 4.
– The rotational stiffness Sj is the secant stiffness as indi-

cated in Fig. 4. The definition of Sj applies up to the 
rotation φXd at which Mj,Ed first reaches Mj,Rd. The ini-
tial stiffness Sj,ini is the slope of the elastic range of the 
design moment–rotation characteristic.

– The design moment resistance Mj,Rd is equal to the max-
imum moment of the design moment–rotation charac-
teristic.

– The design rotation capacity φCd is equal to the maxi-
mum rotation of the design moment–rotation character-
istic.

Rules for calculating those values are given in [1].

4.2 Classification of joints

Joints may be classified by their rotational stiffness Sj,ini, 
their strength Mj,Rd and their rotational capacity φCd, see 
section 5.2 of [1] and Table 1.

Classification by stiffness
Classifying a joint by its rotational stiffness is performed by 
comparing its initial rotational stiffness Sj,ini with the clas-
sification boundaries given in Fig. 5.

Fabrication cost

Material cost

Cost K

Total cost

hinge rigid

Kopt Joint stiffness 

Fig. 3. Total cost as a function of the joint stiffness accord-
ing to [4]

Fig. 5. Classification of beam-to-column joints by stiffness

ϕj

Mj
Mj,Rd

ϕCd

2/3 Mj,Rd

ϕXd

Sj,ini

Sj

Mj

Fig. 4. Design moment–rotation characteristic for a joint

 Pinned

Semi - rigid

Stiffness boundaries
Initial rotational stiffness

Sj,ini ≤ 0.5 EIb/Lb

Sj,ini ≥ Kb EIb/Lb

Sj,ini 

Rigid

ϕj

Mj
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– The location of the bolt is as close as possible to the root
radius of the column flange, the beam web and beam
flange (about 1.5 times the thickness of the column
flange).

– The end-plate thickness is similar to the column flange
thickness.

For other joint types see [6]. The approximate value of the 
initial joint stiffness Sj,app is expressed by

where the values of C for different joint configurations and 
loadings are given in Table 2, parameter z is the distance 
between the compression and tensile resultants and tfc is 
the column flange thickness.

After calculating the distribution of the internal forces 
in the structure using Sj,app, it is necessary to check if this 
assumption was adequate. Fig. 7 shows the upper and 
lower boundaries for semi-continuous joints in braced 
frames. If the re-calculated value of Sj,ini is within the given 
boundaries, the difference between stiffness Sj,app and Sj,ini 
affects the frame’s loadbearing capacity by no more than 
5 %. If Sj,ini is not within the given boundaries, the calcu-
lation of the internal forces has to be repeated with an 
adapted joint stiffness.

5  Analytical investigations of the influence of semi- 
continuous joints on the behaviour of single-span beams

5.1 Assumptions

The equations for estimating the influence of semi-contin-
uous beam-to-column joints on the overall beam behaviour 

S
E z t

C
(1)j,app

2
fc=

⋅ ⋅

[5]. The rules given in [1] are valid for steel grades S235, 
S275 and S355 and for joints for which the design value of 
the axial force NEd in the connected member does not ex-
ceed 5  % of the plastic design resistance Npl,Rd of its 
cross-section.

4.3 Simplified prediction of the initial joint stiffness

The rotational stiffness of a joint can be calculated with the 
rules given in section 6.3 of [1]. But to apply them, the joint 
first has to be defined, which requires knowledge about the 
distribution of the internal forces in the structure and es-
pecially at the positions of the joints. As the stiffness of the 
joint influences the distribution of the internal forces, the 
aforementioned process for determining the internal forces 
and the joint design is iterative. This process could be sim-
plified if the designer could assess the initial joint stiffness 
adequately before the distribution of the internal forces is 
calculated, or at least when the basic dimensions of the 
sections are known.

A method described in [6] allows the initial stiffness of 
a joint to be assessed, which can be used in the preliminary 
design phase using simplified formulae. The designer can 
determine the stiffness of a joint just by selecting the basic 
joint configuration and taking account of some fixed 
choices regarding the connection detailing, e.g. for end-
plate connections:
– The connection has only two bolt rows in tension.
– The bolt diameter is approx. 1.5 times the column flange

thickness.

Joint moment resistance

a) Top of column

b) within column height

Mb,pl,Rd   is the design plastic moment resistance of a beam
Mc,pl,Rd   is the design plastic moment resistance of a column

Full - strength   Mj,Rd ≥ Mpl,Rd

Partial - strength    0.25 Mpl,Rd < Mj,Rd < Mpl,Rd

Mj,Rd

Pinned    Mj,Rd ≤ 0.25 Mpl,Rd

0.25 Mpl,Rd

Mpl,Rd

Strength boundaries

Mj,Rd

Mj,Rd

Either Mj,Rd ≥ Mb,pl,Rd
or Mj,Rd ≥  Mc,pl,Rd 

Either Mj,Rd ≥ Mb,pl,Rd
or Mj,Rd ≥  2 Mc,pl,Rd 

ϕj

Mj

Fig. 6. Classification of joints by strength

Table 2. Approximate determination of joint stiffness Sj,app 
according to [6]

Joints with extended, unstiffened end-plate Factor C

Single 
sided, 
(β ≈ 1)

13

Double 
sided, 
(β ≈ 0)

7.5

Note: For the rare cases of double-sided joint configurations 
where β = 2 (unbalanced moments), the value of the factor C is 
obtained by adding 11 to the relevant value for symmetrical con-
ditions (balanced moments).
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(ULS – distribution of inner forces, SLS – deflection and 
natural frequency) are derived in this section. Based on the 
equations obtained, factors are determined which simplify 
the use of semi-continuous joints, see Tables 3, 4 and 5. 
The rotational restraints at supports are represented by Sj,A 
and Sj,B. The following assumptions were made, see Fig. 8:
– single-span beam
– constant bending stiffness EI
– uniformly distributed constant load and uniform mass

distribution
– Euler-Bernoulli beam theory, shear deformations not

considered
– first-order theory
– only vertical, harmonic vibration
– damping not considered
– linear moment–rotation (Mj-φj) relationship of rota-

tional restraints
Fig. 7. Boundaries for discrepancy between Sj,app and Sj,ini 
for braced frames [6]

Table 3. Factors a and b for determining the maximum bending moment in the span and its position

kA

kB
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.00 a =
b =

1.50
0.50

Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym.

0.10
1.45
0.51

1.40
0.50

Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym.

0.20
1.40
0.52

1.35
0.51

1.30
0.50

Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym.

0.30
1.35
0.53

1.30
0.52

1.25
0.51

1.20
0.50

Sym. Sym. Sym. Sym. Sym. Sym. Sym.

0.40
1.31
0.53

1.25
0.53

1.20
0.52

1.15
0.51

1.10
0.50

Sym. Sym. Sym. Sym. Sym. Sym.

0.50
1.26
0.54

1.21
0.53

1.15
0.52

1.10
0.52

1.05
0.51

1.00
0.50

Sym. Sym. Sym. Sym. Sym.

0.60
1.22
0.55

1.16
0.54

1.11
0.53

1.05
0.53

1.00
0.52

0.95
0.51

0.90
0.50

Sym. Sym. Sym. Sym.

0.70
1.17
0.56

1.12
0.55

1.06
0.54

1.01
0.53

0.95
0.53

0.90
0.52

0.85
0.51

0.80
0.50

Sym. Sym. Sym.

0.80
1.13
0.57

1.07
0.56

1.02
0.55

0.96
0.54

0.91
0.53

0.85
0.53

0.80
0.52

0.75
0.51

0.70
0.50

Sym. Sym.

0.90
1.08
0.58

1.03
0.57

0.97
0.56

0.92
0.55

0.86
0.54

0.81
0.53

0.75
0.53

0.70
0.52

0.65
0.51

0.60
0.50

Sym.

1.00
1.04
0.58

0.98
0.58

0.93
0.57

0.87
0.56

0.82
0.55

0.76
0.54

0.71
0.53

0.65
0.53

0.60
0.52

0.55
0.51

0.50
0.50

1.10
1.00
0.59

0.94
0.58

0.88
0.58

0.83
0.57

0.77
0.56

0.72
0.55

0.66
0.54

0.61
0.53

0.55
0.53

/ /

1.20
0.96
0.60

0.90
0.59

0.84
0.58

0.78
0.58

0.73
0.57

0.67
0.56

0.62
0.55

/ / / /

1.30
0.92
0.61

0.86
0.60

0.80
0.59

0.74
0.58

0.68
0.58

/ / / / / /

1.40
0.88
0.62

0.82
0.61

0.76
0.60

/ / / / / / / /

1.50
0.84
0.63

/ / / / / / / / / /

With M q L
12

k ; M q L
12

k ; max. M q L
12

a at x b LA

2

A B

2

B Span

2

max= − ⋅ ⋅ = − ⋅ ⋅ = ⋅ ⋅ = ⋅
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For n → ∞ and m → 0, then kA → 1.5 and kB → 0. 
This  presents the standard case of a single-span beam with 
a hinged support on one side and rigid support on the 
other. 

The well-known solution M q L
8A

2
= − ⋅

 and MB = 0 is ob-
tained. 

For a beam with rigid supports at both ends, then kA → 1.0 
and kB → 1.0, and the solution is 

M M q L
12

.A B

2
= = − ⋅

The vertical support reaction A as a function of kA and kB 
can be expressed as follows:

A q L
2

q L
12

k k (4)A B( )= ⋅ + ⋅ ⋅ −

5.2 Determination of bending moment distribution

The bending moments at supports A and B can be ex-
pressed as follows:

where

M q L
12

k (2)A

2

A= − ⋅ ⋅

M q L
12

k (3)B

2

B= − ⋅ ⋅

k m 6

m 4 4 m
n

12
n

; k n 6

n 4 4 n
m

12
m

A B= +

+ + ⋅ +
= +

+ + ⋅ +

and n
S L

E I
; m

S L

E I
j,A j,B=

⋅
⋅

=
⋅

⋅

Table 4. Factors c and d for determining the maximum beam deflection and its position

kA

kB
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.00 c =
d =

5.00
0.50

Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym.

0.10
4.80
0.50

4.60
0.50

Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym.

0.20
4.60
0.51

4.40
0.50

4.20
0.50

Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym.

0.30
4.40
1.35

4.20
0.51

4.00
0.50

3.80
0.50

Sym. Sym. Sym. Sym. Sym. Sym. Sym.

0.40
4.20
0.51

4.00
0.51

3.80
0.51

3.60
0.50

3.40
0.50

Sym. Sym. Sym. Sym. Sym. Sym.

0.50
4.01
0.52

3.80
0.51

3.60
0.51

3.40
0.51

3.20
0.50

3.00
0.50

Sym. Sym. Sym. Sym. Sym.

0.60
3.81
0.52

3.61
0.52

3.40
0.52

3.20
0.51

3.00
0.51

2.80
0.50

2.60
0.50

Sym. Sym. Sym. Sym.

0.70
3.61
0.53

3.41
0.52

3.21
0.52

3.00
0.52

2.80
0.51

2.60
0.51

2.40
0.50

2.20
0.50

Sym. Sym. Sym.

0.80
3.42
0.53

3.21
0.53

3.01
0.52

2.81
0.52

2.60
0.52

2.40
0.51

2.20
0.51

2.00
0.51

1.80
0.50

Sym. Sym.

0.90
3.22
0.54

3.02
0.53

2.81
0.53

2.61
0.53

2.41
0.52

2.21
0.52

2.00
0.52

1.80
0.51

1.60
0.51

1.40
0.50

Sym.

1.00
3.03
0.54

2.82
0.54

2.62
0.54

2.42
0.53

2.21
0.53

2.01
0.53

1.81
0.52

1.60
0.52

1.40
0.51

1.20
0.51

1.00
0.50

1.10
2.83
0.55

2.63
0.55

2.43
0.54

2.22
0.54

2.02
0.54

1.81
0.54

1.61
0.53

1.41
0.53

1.20
0.52

/ /

1.20
2.64
0.55

2.44
0.55

2.23
0.55

2.03
0.55

1.82
0.55

1.62
0.54

1.42
0.54

/ / / /

1.30
2.45
0.56

2.25
0.56

2.04
0.56

1.84
0.56

1.63
0.56

/ / / / / /

1.40
2.27
0.57

2.06
0.57

1.86
0.57

/ / / / / / / /

1.50
2.08
0.58

/ / / / / / / / / /

With max. w c
384

q L
E I

at x d L
4

w= ⋅ ⋅
⋅

= ⋅
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Values for factors a and b, as a function of stiffness coeffi-
cients kA and kB, are given in Table 3.

5.3  Influence of semi-continuous joints on beam deflection

The beam deflection is expressed by the well-known linear 
differential equation

After applying Eq. (5) in place of M(x), Eq. (11) takes the 
following form:

Constants C1 and C2 are determined with the boundary 
conditions:

where a 3
2

1
2

k k 1
24

k k kA B A B
2

A( ) ( )= + ⋅ − + ⋅ − −

x b L (10)max = ⋅

w x
M x

E I
(11)) )( (

′′ = −
⋅

E I w x M x A x M 1
2

q x

E I w x A 1
2

x M x 1
6

q x C

E I w x A 1
6

x M 1
2

x

1
24

q x C x C (12)

A
2

2
A

3
1

3
A

2

4
1 2

( ) ( )
( )
( )

− ⋅ ⋅ ′′ = = ⋅ + − ⋅ ⋅

− ⋅ ⋅ ′ = ⋅ ⋅ + ⋅ − ⋅ ⋅ +

− ⋅ ⋅ = ⋅ ⋅ + ⋅ ⋅

− ⋅ ⋅ + ⋅ +

w x L C 1
6

A L 1
2

M 1
24

q L

w x 0 C 0

1
2

A
3

2

( )
( )

= ⇒ = − ⋅ ⋅ − ⋅ + ⋅ ⋅

= ⇒ =

and the bending moment as a function of x:

Using Eqs. (2) and (4) with Eq. (5), the following expres-
sion is derived for the bending moment as a function of x 
and the stiffness coefficients kA and kB:

The position of the maximum bending moment can be cal-
culated with M′(x) = 0, which leads to

Eq. (7) can be expressed in a dimensionless format:

Using Eqs. (7) and (6), the maximum bending moment in 
the span MSpan can be expressed as

M x A x M 1
2

q x (5)A
2( ) = ⋅ + − ⋅ ⋅

M x q L
2

x q L
12

k k x

q L
12

k 1
2

q x (6)

A B

2

A
2

( ) ( )= ⋅ ⋅ + ⋅ ⋅ − ⋅

− ⋅ ⋅ − ⋅ ⋅

M x 0 q L
2

q L
12

k k q x 0

x L
2

L
12

k k (7)

A B

A B

( ) ( )

( )

′ = ⇒ ⋅ + ⋅ ⋅ − − ⋅ = ⇒

⇒ = + ⋅ −

b x
L

1
2

1
12

k k (8)A B( )= = + ⋅ −

max. M q L
12

a (9)Span

2
= ⋅ ⋅

Table 5. Factor e for determining the natural frequency

kA

kB
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.00 e = 1.00 Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym.

0.10 1.02 1.04 Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym.

0.20 1.04 1.07 1.09 Sym. Sym. Sym. Sym. Sym. Sym. Sym. Sym.

0.30 1.07 1.09 1.12 1.15 Sym. Sym. Sym. Sym. Sym. Sym. Sym.

0.40 1.09 1.12 1.15 1.18 1.22 Sym. Sym. Sym. Sym. Sym. Sym.

0.50 1.12 1.15 1.18 1.22 1.25 1.30 Sym. Sym. Sym. Sym. Sym.

0.60 1.15 1.18 1.22 1.25 1.30 1.34 1.39 Sym. Sym. Sym. Sym.

0.70 1.18 1.21 1.25 1.30 1.34 1.39 1.45 1.52 Sym. Sym. Sym.

0.80 1.21 1.25 1.29 1.34 1.39 1.45 1.52 1.59 1.68 Sym. Sym.

0.90 1.25 1.29 1.34 1.39 1.45 1.52 1.59 1.68 1.79 1.91 Sym.

1.00 1.29 1.34 1.39 1.45 1.51 1.59 1.68 1.78 1.91 2.07 2.27

1.10 1.34 1.39 1.45 1.51 1.59 1.68 1.78 1.91 2.06 / /

1.20 1.38 1.44 1.51 1.58 1.67 1.77 1.90 / / / /

1.30 1.44 1.50 1.58 1.66 1.77 / / / / / /

1.40 1.50 1.57 1.66 / / / / / / / /

1.50 1.56 / / / / / / / / / /

With f e
2 L

E I
m

, with m uniform mass1

2

2
= ⋅ π

⋅ π ⋅
⋅ ⋅ =

05_01_15_201610007_Braun.indd   7 28.01.16   13:55



M. Braun/J. Duarte da Costa/R. Obiala/C. Odenbreit · Design of single-span beams for SLS and ULS using semi-continuous beam-to-column joints

8 Steel Construction 9 (2016), No. 1 (reprint)

Eq. (15) has three real solutions. The solution gives the 
position of the maximum beam deflection and can be ex-
pressed as a factor d. By using the now known position of 
the maximum vertical beam deflection with Eq. (14), the 
value of the maximum deflection can be calculated. Hence, 
the maximum vertical beam deflection w can be calculated 
using

and the position of the maximum deflection with

Pre-calculated values for factors c and d as a function of 
the stiffness coefficients kA and kB are given in Table 4.

5.4  Influence of semi-rigid joints on the natural frequency of 
the beam

The natural frequency of the beam is of significant interest 
for the structural engineer. Based on the differential equa-
tion of the harmonic vibration, a factor e, which allows a 
quick determination of the natural frequency, is given in 
Table 5.

The constants are determined with the boundary condi-
tions:

max. w c
384

q L
E I
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= ⋅ ⋅
⋅
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+ ⋅ λ ⋅
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v x 0 0 C C 0

v x L 0 C cos cosh

C sin C sinh 0
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L
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E I
C
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4
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⋅

⋅
⋅

+
⋅

⋅
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Finally, the beam deflection as a function of the stiffness of 
the rotational springs is defined as follows:

The design value and position of the maximal vertical de-
flection is of key interest for the designer. It is derived from 

This equation of the third order is solved by using the for-
mulae from Cardan:

Substituting x = y – r/3, the reduced form is obtained: 

The discriminant D can be expressed as

For the given application range of the rotation (0 ≤ x ≤ L) 
and for the stiffness coefficients kA and kB (0 ≤ kA, kB ≤ 
1.5), the discriminant is always D ≤ 0 and p < 0. Therefore, 

E I w x 1
6

A x L x 1
2

M x L x

1
24

q x L x (13)

3 2
A

2

4 3

( ) ( )
( )

( )− ⋅ ⋅ = ⋅ ⋅ − ⋅ + ⋅ ⋅ − ⋅
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24
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3 3

A
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( ) ( )

( ) ( )− ⋅ ⋅ = ⋅ ⋅ − + ⋅ ⋅ − ⋅ −
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2
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Fig. 8. Simply supported beam with rotational springs at the 
supports
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Note: As Eq. (24) is non-algebraic, it had to be solved 
by numerical iteration. Therefore, the given values for the 
factor e are an approximation. The given factors a, b, c and 
d (described in the previous sections) are precise results, 
rounded to two digits.

6  Application example – single-span slim-floor beam with 
semi-continuous joints

6.1 Structural system and loading

The use of semi-continuous joints using elastic–plastic 
global analysis is demonstrated for a single-span slim-floor 
beam (SFB) with a beam span L = 9.00m and a beam dis-
tance a = 8.10 m (axis-to-axis). The beam is loaded with a 
uniformly distributed constant load q, has a constant bend-
ing stiffness EI and it is symmetrically supported in an in-
ternal bay, see Fig. 9a. The SFB cross-section consists of an 
HE320A hot-rolled section in grade S355 and a welded 
bottom plate, see Fig. 9b. The SFB section has an inertia Iy 
= 39 560cm4 with zel,top = 23.445 cm (measured from top 
of upper flange downwards); possible participation of the 
concrete is not taken into account. The slab consists of 
Cofraplus 220 metal decking with 13 cm in situ concrete 
[7]. It is shown that the use of semi-continuous joints leads 
to an economical beam design for the ultimate limit state 
(ULS) and to improved deflection and vibration behaviour 
of the beam at the serviceability limit state (SLS).

Safety factors: γM0 = 1.00; γM1 = 1.00; γM2 = 1.25
Yield strength of hot-rolled section, HE320A,  
S355: fyd = 355 N/mm2

Yield strength of bottom plate, 450 × 25 mm, 
S355: fyd = 345 N/mm2

which leads to the following linear equation system:

The equation system is solved if the determinant of ma-
trix B = 0. The lowest value for li for which the above 
equation system is solved (the trivial solution l = 0 is 
forbidden) is required. The determinant of matrix B is 
expressed with

Solutions for l as a function of stiffness coefficients kA and 
kB are given in Table 5.

The natural frequency can be calculated with

where m = uniformly distributed constant mass.
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Fig. 9a. Application example – structural system and load-
ing
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Fig. 9b. Application example – SFB cross-section with slab

05_01_15_201610007_Braun.indd   9 28.01.16   13:55



M. Braun/J. Duarte da Costa/R. Obiala/C. Odenbreit · Design of single-span beams for SLS and ULS using semi-continuous beam-to-column joints

10 Steel Construction 9 (2016), No. 1 (reprint)

⇒ At mid-span the SFB section is classified as a class 2
section. A class 2 section can develop its plastic cross-sec-
tional resistance, but has not enough rotational capacity to 
allow for a plastic hinge.

Cross-section at supports – pure bending, negative 
bending moment:
Edge of bottom plate in compression: 

Bottom plate + lower flange in compression: 

⇒ At the supports the SFB section is classified as a class 1
section, which can form a plastic hinge with the rotational 
capacity required from plastic analysis without a reduction 
in the resistance.

6.3 Semi-continuous beam-to-column joint

The design of the joint is not presented in detail in this 
article. The joint can be designed using standard software 
or even by hand calculation; reference is made to [1]. The 
joint is designed as semi-continuous with an extended end 
plate, see Fig. 10. Both beam ends are connected sym-
metrically to the columns with end plates (Sj,A = Sj,B, n = 
m, kA = kB).

The design moment–rotation characteristic of the 
joint is presented in Fig. 11a and was calculated according 
to [1]. The initial stiffness Sj,ini is within the boundaries for 
a semi-rigid joint (see also Fig. 5). Its design moment resis-
tance Mj,Rd = 360 kNm is within the limits given in Fig. 6 
for a partial-strength joint (0.25 ∙ Mpl,Rd ≤ Mj,Rd ≤ Mpl,Rd 
with Mpl,Rd = Mb,pl,Rd = 732 kNm). Therefore the joint is 
classified as semi-rigid and partial-strength and is modelled 
in design as semi-continuous joint.

c
t

310 2 15.5 2 27
9

225
9

25.0 58.58 72 235
355

72 class 1

= − ⋅ − ⋅ =

= < = ⋅ = ⋅ ε ⇒

c
t

75
25

3.00 7.43 9 235
345

9 class 1= = < = ⋅ = ⋅ ε ⇒

c
t

0.5 300 9 2 27

25.0 15.5
118.5
40.5

2.93 7.43

9 235
355

9 class 1

( )
=

⋅ − − ⋅
+

= = <

= ⋅ = ⋅ ε ⇒

Elastic bending resistance of SFB cross-section: 

Plastic bending resistance of SFB cross-section: Mpl,Rd = 
732 kNm with zpl = 30.75 cm from top of upper flange 
downwards (by hand calculation).

The beam-to-column joints are realized as end-plate 
connections with a rotational stiffness Sj,A = Sj,B.

Load assumptions:
Cofraplus 220 with 13 cm concrete: gC+220 = 4.29 kN/m2

Additional dead load: Dg = 1.20 kN/m2

Self-weight of SFB with concrete encasement: 
gSFB = 1.82 kN/m + 2.75 kN/m = 4.57 kN/m
Dead load (slab + beam, self-weight):

Live load (category B1, office use, ψ0 = 0.70): 2.00 kN/m2 
Partitions: 1.20 kN/m2

∑qk = 1.1 ∙ (2.00 + 1.20) kN/m2 ∙ 8.10 m = 28.51 kN/m

Reduction factor: 5
7

10 m
9 8.10 m

0.64A 0

2

2
α = ⋅ ψ +

⋅
=

Reduced live load:  
q′k = ∑qk ∙ aA = 28.51 kN/m ∙ 0.64 = 18.17 kN/m

The additional load on the beam due to continuity of the 
slab – perpendicular to beam span – is taken into account 
by a factor of 1.10.

Load combinations:
Total characteristic load: Ek  = qSLS = ∑gk + q′k 

= 51.83 kN/m = 18.17 kN/m 
= 70.0 kN/m

Design load: Ed  = qULS = 1.35 ∙ ∑gk + 1.50 ∙ q′k 
= 1.35 ∙ 51.83 kN/m + 1.50 ∙ 18.17 kN/m  
= 97.2 kN/m

6.2 Section classification

Cross-section at mid-span – pure bending, positive bending 
moment:
Upper flange in compression:

Web in compression:

M
f I

z
35.5 kN/cm 39560 cm

23.445 cm

599 kNm

el,Rd
yd y

el,top

2 4
=

⋅
= ⋅

=

g [1.1 4.29 kN/m (8.10 0.45 2 0.05) m

1.1 1.20 kN/m 8.10 m]

4.57 kN/m 51.83 kN/m

k
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2
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+ =

9 9 235
355

7.32 c
t
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Fig. 10. Application example – basic components of 
semi-continuous joint
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Calculation of qj,el
Up to a bending moment M 2

3
M ,j,Ed j,Rd≤ ⋅  the initial joint 

stiffness Sj,ini can be used in the calculation, see 5.1.2(3) in 
[1].

Using the equations given in section 5, it is possible to 
calculate the values for n = m and kA = kB:

And using Eq. (2) we get qj,el:

Calculation of qj,Rd
For a bending moment Mj,Ed in the range 

we use the joint stiffness Sj,2 = 7.4 MNm/rad, see Fig. 11b.

2
3

M 2
3

360 kNm 240 kNm

S 51.6 MNm/rad
j,Rd

j,ini

⋅ = ⋅ =

⇒ =

n m
S L

E I
51.6 MNm/rad 9.0 m

210000 MN/m 39560 10 m

5.59 [ ]
rad

j,ini
2 8 4

= =
⋅

⋅
= ⋅

⋅ ⋅

= −

−

k k m 6

m 4 4 m
n

12
n

5.59 6

5.59 4 4 5.59
5.59

12
5.59

0.74
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q L

12
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q 9 m

12
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q 48.0 kN/m

j,Rd
j,el

2

A
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2

j,el

( )
⋅ = =

⋅
⋅ =

⋅
⋅

⇒ =

2
3

M M Mj,Rd j,Ed j,Rd⋅ < ≤

For the following analysis of the SFB for SLS and 
ULS, a tri-linear approximation of the moment–rotation 
characteristic is used in accordance with 5.1.1(4) of [1], see 
Fig. 11b. It is divided into three areas:
– An elastic area for a joint rotation φj within the range

0 ≤ φj ≤ φj,el
– A second area for a joint rotation φj within the range φj,el

≤ φj ≤ φXd
– A plastic area for a joint rotation φj within the range φXd

≤ φj ≤ φCd

Note: Using Eq. (1) and Table 2 of section 4.3, an approx-
imate joint stiffness Sj,app could be calculated as follows:

Based on the given SFB section, the structural system and 
the design moment–rotation characteristic (Fig. 11b), the 
corresponding load levels qj,el and qj,Rd are calculated for 
the joint rotations φj,el and φXd.

S
E z t

C

210000 MN/m 0.307 m 0.0215 m

7.5

56.7 MNm/rad 56.7 kNm/mrad
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2
fc

2 2( )
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⋅ ⋅
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= =
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Mj,Rd = 360 kNm
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ϕXd = 20.9 mrad

Sj,ini = 51.6 kNm/mrad

8 EIb / Lb = 73.8 kNm/mrad 

0.5 EIb / Lb= 4.6 kNm/mrad  

Fig. 11a. Application example – design moment–rotation 
characteristic of semi-continuous joint
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Fig. 11b. Application example – tri-linear approximation of design moment–rotation characteristic
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represents a sufficiently precise approximation of the real 
joint behaviour.

Total characteristic load: 

Load combination for beam deflection at mid-span:

Load combination for natural frequency:

Calculation of SFB deflection at mid-span:
As shown in Fig. 11b, the load qSLS is in “area 2” (qj,el ≤ 
qSLS = 70.0 kN/m ≤ qj,Rd), so the deflection wSLS has to be 
calculated in two steps.

Step 1 – deflection wel with qj,el:
For kA = kB = 0.74, factor c is taken from Table 4: c = 2.04 
(by linear interpolation).

Deflection wel is calculated using Eq. (17):

Step 2 – additional deflection Dw with DqSLS:
Taking the load DqSLS = qSLS – qj,el = 70 kN/m – 48 kN/m 
= 22 kN/m, a deflection Dw is calculated using the joint 
stiffness Sj,2 = 7.4 kNm/mrad, see Fig. 11b.

E g q 51.83 kN/m 18.17 kN/m 70.0 kN/mk k k= Σ + ′ = + =

q 1.0 g 1.0 q

1.0 51.83 kN/m 1.0 18.17 kN/m 70.0 kN/m

SLS k k= ⋅ Σ + ⋅ ′

= ⋅ + ⋅ =

q 1.0 g 0.20 q

1.0 51.83 kN/m 1.0 18.17 kN/m 55.5 kN/m

Hz k k= ⋅ Σ + ⋅ ′

= ⋅ + ⋅ =

w c
384

q L

E I
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384
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4 2 4

2 4

( )
⇒ = ⋅

⋅
⋅

= ⋅
⋅ ⋅

⋅

=

−

First, factors n2 = m2 and kA,2 and kB,2 have to be calcu-
lated:

Using Eq. (2) we get

6.4 Beam design for SLS

The total vertical beam deflection and the natural fre-
quency of the SFB are determined by using the equations 
and tables in section 5. In the absence of a more precise 
method for defining the joint stiffness, the tri-linear design 
moment–rotation characteristic of Fig. 11b is used, which 
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Fig. 12. Application example – idealized joint stiffness for vibration analysis Sj,Hz
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From Table 5 we obtain e = 1.49 (by linear interpolation).
Using Eq. (25), the natural frequency can be calcu-

lated as follows:

The value of 2.60 Hz as a minimum acceptable natural 
frequency of the floor beams is found in [8]. Even though 
the natural frequency is commonly used to assess floor vi-
brations, the authors recommend using more precise meth-
ods that take into account the natural frequency of the 
whole floor and its modal mass. For further information 
see [9] and [10].

Note: With simple, hinged beam-to-column joints, the 
natural frequency of the SFB would be only 2.35 Hz!

6.5  Beam design for ULS

Design checks for bending and shear with semi-contin-
uous joints
Based on the simplified tri-linear design moment–rotation 
characteristic given in Fig. 11b and a design load level qj,el 
< qEd = 97.2 kN/m < qj,Rd, the bending moment at the joint 
Mj,Ed and the one at mid-span MEd are calculated as fol-
lows:
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With kA,2 = kB,2 = 0.29, factor c2 is determined with 
Table 4: c2 = 3.84 (by linear interpolation).
A deflection Dw is calculated using Eq. (17):

which leads to the following total vertical deflection of the 
SFB at mid-span:

wSLS = wel + Dw = 2.01 cm + 1.74 cm = 3.75 cm ≈ L/240 < 
L/200 ⇒ The deflection is within acceptable limits.

Note: With simple, hinged beam-to-column joints, the 
beam deflection at mid-span would be:

which is 1.92 times the deflection of the semi-continuous 
beam!

A basic assumption of the calculation of the beam 
deflection is an elastic material behaviour; the strains in 
the cross-section do not exceed the yield strain. To verify 
this assumption, the bending moment of the joint Mj,SLS 
at SLS and the bending moment at mid-span MSLS are 
calculated and compared with the elastic bending resis-
tance of the SFB cross-section:

⇒ The SFB cross-section remains fully elastic at SLS, the
assumption is correct.

Calculation of the natural frequency of the SFB
The natural frequency of the SFB is determined based 
on the equations in section 5. The load qHz is in “area 2” 
(qj,el ≤ qHz = 55.5 kN/m ≤ qj,Rd), and so an idealized joint 
stiffness Sj,Hz is used, see Fig. 12. For qHz, the corre-
sponding values of the joint rotation Φj,Hz and the bend-
ing moment Mj,Hz are: Φj,Hz = 6.6 mrad and Mj,Hz = 
254.5 kNm ⇒ Sj,Hz = Mj,Hz/Φj,Hz = 254.5 kNm / 6.6 
mrad = 38.5 kNm/mrad

w
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As this reduction in the yield strength is < 1 %, it is ne-
glected in this example.

The SFB cross-section is not plastified at the supports. 
At mid-span it is partially plastified, but there is still no 
development of a plastic hinge; therefore, the classification 
of the cross-section in class 2 is sufficient for the chosen 
design method.

Rotational capacity of the joint
Elastic–plastic global analysis was used in the given ex-
ample. The joint is not located at the position of a plastic 
hinge, and the acting design moment does not reach the 
value of the design moment resistance, Mj,Ed < Mj,Rd. 
Therefore, the rotation φEd does not reach φXd and the 
rotational capacity of the joint does not have to be 
checked.

6.6 Economic evaluation of semi-continuous joints

This section compares the cost of the SFB designed with 
semi-continuous joints with a beam design using simple 
joints. The design of the simply supported SFB was carried 
out with the software [12] and was based on the same as-
sumptions as the design of the semi-continuous SFB (same 
load assumptions and L = 9.0 m, a = 8.10 m, hSlab = 350 mm). 
The basic components of the simple joint are shown in Fig. 
14. The cost difference for the basic components is presented
in Table 6. Only the direct costs of the non-identical parts are 
given; the possible influence of the joint design on the foun-
dations, columns etc. was not taken into account.

f 1
2 V
V

1 f

1 2 437.4 kN
843 kN

1 35.5 kN/cm

35.45 kN/cm

yd,V
Ed

pl,Rd

2

yd

2
2

2

= −
⋅

−


























⋅

= − ⋅ −


















⋅

=

which leads to the bending moment distribution presented 
in Fig. 13.

Verification of the SFB cross-section for bending at mid-
span:

Note: With simple beam-to-column joints, the bending mo-
ment at mid-span MEd would exceed the bending resist-
ance Mpl,Rd of the cross-section: 

Verification of the SFB cross section at the supports:

Bending: = ≤ =M 336 kNm M 732 kNmj,Rd pl,Rd

Shear: 

⇒ Verification is fulfilled!
With a load ratio VEd/Vpl,Rd = 437.4 kN/843 kN = 

0.52 > 0.50, the bending resistance has to be reduced due 
to the presence of a shear force. According to 6.2.8 of [11], 
this may be done by reducing the yield strength of the 
shear area by

M 648kNm M 732 kNm

Verification is fulfilled!
Ed pl,Rd= ≤ =

⇒

M 984 kNm M 732 kNm!Ed pl,Rd= > =

V q L/2 97.2 kN/m 9 m/2

437.4 kN V
A

3
f

41.13 cm

3
35.5 kN/cm 843 kN

Ed Ed

pl,Rd
vz

yd

2
2

= ⋅ = ⋅

= ≤ = ⋅

= ⋅ =

4M20, 8.8

5

5

300x300x20
S355

125

[mm]

HE280M
S355

450x25
S355

Fig. 14. Application example – nominally pinned joint con-
figuration

Table 6. Application example – cost comparison: simple 
joints vs. semi-continuous joints

Joint Type /
Component

Simple
Semi-con-
tinuous

Cost Difference*
€/SFB

Hot Rolled 
Section

(Grade S355)
HE280M HE320A – 480 €

Weld size
(Endplate to 
flanges only)

5 mm 10 mm + 100 €

Endplate
(Grade S355)

300 × 300 
× 20

450 × 300 
× 20

+ 20 

Bolts
4 M 20, 

8.8
6 M 30, 

10.9
+ 60 €

Total DCost: – 300 €

⇒ Beam Design with semi-continuous joints is 300 € cheaper
(per 9 m SFB)! 

* Estimated cost based on 2015 price level, including erection.

9.00m

984 kNm 336 kNm

648 kNm

Fig. 13. Application example – bending moment distribu-
tion for ULS
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7 Conclusion and outlook

This article outlines the advantage of semi-continuous 
beam-to-column joints for the design of single-span beams 
(with constant inertia and subjected to a uniformly distrib-
uted constant load) at ULS and SLS. Factors for use in 
combination with standard design formulae were derived 
analytically. They allow the structural engineer to deter-
mine the influence of the joint stiffness on the beam deflec-
tion, its natural frequency and the distribution of the bend-
ing moment quickly and easily. Further, the application is 
shown in a design example for a slim-floor beam (SFB), 
which shows the economic potential of semi-continuous 
joints. Overall, such joints lead to a more economic, more 
sustainable structure. The influence of semi-continuous 
joints on the design of single-span beams with partially 
constant inertia will be investigated in a second article.
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