

Secure With Steel Training 19th and 20th March 2009

Resistance to Fire - Chain of Events

3: Mechanical actions

4: Thermal response

5: Mechanical response

6: Possible collapse

Thermal action on structure

Column 4 sides exposed

Heat transfer at surface of building elements

- Exposed side
- Non-exposed side

Structural Fire Safety Engineering vs. Classification

Actions on Structures Exposed to Fire EN 1991-1-2 - Prescriptive Rules

Nominal Temperature-Time Curve

Prescriptive Fire Regulations Defining ISO Curve Requirements

Stages of a Natural Fire and the Standard Fire Curve

Passive Protection of steel for fire resistance > 30minutes

Additional cost of the protection > 40% of the finished steel structure

Partially Encased Beams & Columns

Actions on Structures Exposed to Fire EN 1991-1-2 - Performance Based Code

Natural Fire Safety Concept

Implemented in:

- EN 1991-1-2
- Some National Fire Regulations include now alternative requirements based on Natural Fire

EN 1991-1-2

November 2002

ICS 13.220.50; 91.010.30

English version

Eurocode 1: Actions on structures - Part 1-2: General actions -Actions on structures exposed to fire

Eurocode 1: Actions sur les structures au feu - Partie 1-2: Actions générales - Actions sur les structures exposées

Eurocode 1 - Einwirkungen auf Tragwerke - Teil 1-2: Allgemeine Einwirkungen - Brandeinwirkungen auf Tragwerke

Natural Fire Model

List of needed Physical Parameters for Natural Fire Model

- Boundary properties
- Ceiling height
- Opening Area
- > Fire surface
- Rate of heat release

Arcelor Mittal

Characteristics of the Fire Compartment

Characteristic of the Fire for Different Buildings

Occupancy	Fire Growth Rate	RHR [kW/m²]	Fire Load q 80% fractile ^{f,k} [MJ/m²]		
Dwelling	Medium	250	948		
Hospital (room)	Medium	250	280		
Hotel (room)	Medium	250	377		
Library	Fast	500	1824		
Office	Medium	250	511		
School	Medium	250	347		
Shopping Centre	Fast	250	730		
Theatre (movie/cinema)	Fast	500	365		
Transport (public space)	Slow	250	122		

Fire Load Density

Compartment floor area A _f [m²]		8900	Danger of Fire Activation δ _{q1}		Danger of Fire Activation δ _{q2}		Examples of Occupancies		
25 1,		,10	0,	78	40	Art gallery, museum, swimming pool			
250		,50	1,	00	Residence, hotel, office				
2500			1,90		1,	22		Manufactory for machinery & engines	
5000		2,00		1,	44	Chemic Painting	Chemical laboratory, Painting workshop		
10000		2 13		4	66	Manufactory of fireworks or paints			
Automatic	$f_{f,d} =$			$q \angle$.		711		\boldsymbol{Q}_f	, K
Automatic Water Extinguishing System	Independent Water Supplies 0 1 2	Dete	atic fire ection larm by Smoke	Automatic Alarm Transmission to Fire Brigade	Work Fire Brigade	Off Site Fire Brigade	Safe Access Routes	Fire Fighting Devices	Smoke Exhaust System
δ _{n1}	δ _{n2}	δ _{n3}	δ _{n4}	δ _{n5}	δ _{n6}	δ _{n7}	δ _{n8}	δ _{n9}	δ _{n10}
							0,9 or 1	1,0	

Rate of Heat Release Curve Stationary State and Decay Phase

Natural Simplified Fire Model

Simplified Fire Models Localised Fire

FULLY ENGULFED COMPARTMENT θ (t) uniform in the compartment

Simplified Fire Models Fully Engulfed Compartment

LOCALISED FIRE

Real Fire Test Simulating an Office Building

Fully engulfed fire

Fully Engulfed Compartment Parametric Fire

Natural Advanced Fire Model

Advanced fire Models

Fire compartment

Ignition

Localised fire

Growing of the localised fire

Ozone Theory: localised fire

→ ➤ Ozone Model

Localised fire

Ozone Theory: Switch from 2 zones to 1 zone

- ≥ 2 → 1 zone: if one of the following criteria is reached.
 - \mbox{T} T_{smoke} > 500 °C
 - \square Combustible material inside the smoke and $T_{smoke} > 300$ °C
 - ☐ Localised fire > 25 % of the total compartment surface
 - ☐ Smoke layer > 80 % of the compartment height

Ozone Theory: Switch from 2 zones to 1 zone

> Fully engulfed fire

Ozone Model

Large Compartment Test Fire Load

Large Compartment Test External Flaming During the Test

Large Compartment Test After the Test

Two Zone Calculation Software "OZone V2.2" ArcelorMittal

OZone results: Input and Computed RHR

ArcelorMittal

OZone results: Gas Temperatures

OZone results: Smoke Layer Thickness

OZone results:

Calibration of Software OZone: Gas Temp

Calibration of Software OZone: Steel Temp

OZone: Case Study

Influence of the Actives Fire Safety Measures

Computer Fluid Dynamics: Software FDS

Computer Fluid Dynamics: Software FDS

Meshing d€

FDS Resutls: Gas temperatures, smoke...

Thank you for your attention