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Three steps 

in the structural fire design

1.Define the fire (not made by SAFIR).

2.Calculate the temperatures in the structure

(thermal analysis).

3. Calculate the mechanical behaviour 

(mechanical analysis).
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Step 1: Define the fire (that will then be 

taken as a data by SAFIR).
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Option 1: a design fire Tg = f(t)
Command: FRONTIER

 Either

• ISO 834, 

• hydrocarbon curve of Eurocode 1,

• external fire curve of Eurocode 1,

• ASTM E119,

all embedded in SAFIR.

 Or choose your own time-temperature curve

(from zone modelling for example) and describe it

point by point in a text file.

6



Option 1: a design fire Tg = f(t)
Command: FRONTIER

   4 4

g S g Sq h T T T T     

Heat flux at the surface 𝑞. linked to a Tg-t curve:

With Tg gaz temperature;

TS surface temperature;

h coefficient of convection;

σ constant of Stefan-Boltzmann;

ε relative emissivity.
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Example of a tool for determining Temperature-

time curves in a fire compartment:

OZone
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Result to be used by SAFIR : the time-temperature curve
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Option 2: a flux at the boundary

 q f t 

f(t) is described point by point in a text file.

Note: If the flux is continuous and positive, the 

temperature keeps on rising to infinite values.

=> It is possible (and recommended) to combine a 

flux with a Tg-t condition, with Tg = 20°C.

Command: FLUX
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Option 3: temperature evolution imposed at one or 

several nodes.

Note: 

Imposing the temperature in the air Tg with a FRONTIER

is different from

imposing the temperature at the nodes on the boundary of the 

section Tn. 

Command: BLOCK
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Option 4: impose nothing on a boundary

This will make this boundary adiabatic (no heat 

exchange).

This will make this boundary act as a line of 

symmetry.

=> Not a good option on the unexposed side of a 

wall or of a concrete slab (it is recommended to 

use a FRONTIER command with the air at 20°C: F20).

Command: -
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Option 5: a flux defined by a local fire model

See advanced SAFIR courses.

 Either from EN 1991-1-2 (Hasemi's model),

 Or from LOCAFI model,

 Or from FDS calculation.
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Step 2. Thermal analysis - discretization of the structure

2D3D

Example

A concrete beam

2 options are possible: 3D (for details) or 2D (for beams)
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The local (strong formulation) of the heat equation in 2D is:

(transient partial differential equation)

with boundary conditions of the type:

 Specified temperature: 𝑇𝑠 = 𝑇1 𝑥, 𝑦, 𝑧

 Specified heat flux:     𝑞𝑥𝑛𝑥 + 𝑞𝑦𝑛𝑦 = −𝑞𝑆 Note: 𝑞𝑥 = −𝑘
𝜕𝑇

𝜕𝑥

 Convection boundary condition: 𝑞𝑥𝑛𝑥 + 𝑞𝑦𝑛𝑦 = 𝛼𝑐 𝑇𝑔 − 𝑇𝑠

 Radiation boundary condition:           𝑞𝑥𝑛𝑥 + 𝑞𝑦𝑛𝑦 = Φ 𝜀∗ 𝜎 𝑇𝑔
4 − 𝑇𝑠
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 Initial condition for transient problems: 𝑇 𝑥, 𝑦, 0 = 𝑇0 𝑥, 𝑦
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Finite Element method
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 Transform the local differential equation into a system of algebraic equations

 Solve for approximate values of the unknowns at discrete number of points 

over the domain

Shape functions (interpolation)



The local and steady state equilibrium equation for conduction 

in 2D is:

It is transformed into an element equilibrium equation.

For a 4 nodes element, it has the form:
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    qTK 
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The temperatures that are the solution of Eq. 2, do 

not satisfy Eq. 1 exactly. They satisfy it in average. 
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2D thermal model

Meshing of the section with 3 or 4 noded linear elements. 

The temperature is represented here graphically by the 

vertical elevation. It defines a surface in the (Y, Z, T) space.

T

Y

Z
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The temperature surface in 3 node elements can only be a plane.

=> The temperature varies linearly along the edges of the elements
23

The temperature surface in 4 node elements is a paraboloid

hyperbolic
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The temperature varies linearly along the edges of all 

elements => C0 continuity for the temperature field
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2 adjacent paraboloid hyperbolic and the common linear edge
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Adjacent triangular and quadrangular surfaces with common linear edges

N.B.: one edge is missing (see next slide)
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True section Matching Discretised section

The discretised section 

is an approximation of the real section.

28



Different discretizations, different results.

Why is that?

Same section, same temperature at the corners.

Different discretizations => different temperature distributions in 

the section

Isotherms
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 

Same section.

Different discretizations.

Different results

Note: the results tend toward the true solution 

when the size of the elements tends toward 0.
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295.04 295.04 295.04

Mesh sensitivity
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Non linear thermal properties are present in Eq. 2.

Here, thermal conductivity of concrete
(non reversible during cooling).
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USER Material

Temperature-dependent 
material properties defined 
by the user
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USER Material

Temperature-dependent 
material properties defined 
by the user
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Integration of the thermal properties on the surface:

Numerical method of Gauss

NG = 1

NG = 2

NG = 3
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What is a cavity in SAFIR?

Definition: cavity = part of the model that does not contain solid, 

but influences the heat transfer in the model.

 Enclosed cavities
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Diamond 2011.a.2 for SAFIR

FILE: prot3board

NODES: 1225

ELEMENTS: 1021

SOLIDS PLOT

FRONTIERS PLOT

CONTOUR PLOT

TEMPERATURE PLOT

TIME: 3600 sec
1041.90
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 Open cavities (don’t forget

SYMVOID)
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.Capabilities:

 Concave cavities

X
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Z

Diamond 2011.a.2 for SAFIR

FILE: test_void2

NODES: 201

ELEMENTS: 124

SOLIDS PLOT

TEMPERATURE PLOT

TIME: 3600 sec
482.00

40.00
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<Tmin

Limitation: only possible in 2D models, not in 3D

 Included objects
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Heat transfer modes

1) Radiation in the cavity.

 Gaz in the cavity is taken as fully transparent (no absorption).

 Radiative temperature of each facet = temperature at mid length of the facet

A cavity discretised by N = 6 facets
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For each facet i, 

 The view factors to all facets j are 

computed: Fij (this may take some 

time).

 The sum is computed 𝑆 =  𝑗=1
𝑁 𝐹𝑖𝑗

 If S ≠ 1.00  => all Fij are divided by S

(this ensures that no energy is created 

due to numerical errors in the 

computation of the view factors).

i

A cavity discretised by N = 6 facets

On surface   1, Sum FiJ =  1.001

On surface   2, Sum FiJ =  1.001

On surface   3, Sum FiJ =  1.001

On surface   4, Sum FiJ =  1.000

SAFIR message
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Classical equations of heat transfer by radiation.

Note: 

Radiation = f(T4)

=> The tangent matrix is not symmetrical.

=> The matrix is made symmetrical, thus not exact anymore.

=> Convergence may be slower

=> Use smaller time steps

! Convergence is toward the true solution.

45



Heat transfer modes

2) Convection in the cavity.

HYPOTHESES:

 The viscosity of gas in the cavity is very high.

 The cavity is assumed to be small.

=> The temperature of gas is uniform in the cavity

 The volumetric heat (cρ) of gas is negligible.

 The convection on the surface of the facets is linear: q’ = hnon exposed surfaces (Tgas-Tfacet)

=> The temperature of the gas is the average of the temperatures on the facets.

Tgaz

A cavity discretised by N = 6 facets
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Heat transfer modes

2) Convection in the cavity.

LIMITATIONS:

Gravity is not considered => The orientation of the cavity, for example vertical or 

horizontal, is not considered.

Air movements within the cavity are not considered.

=> Convection is considered in a simplified manner (but radiation is usually 

dominating).

Tgaz

A cavity discretised by N = 6 facets
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Symmetries
REALSYM: 

 There is an axis of symmetry (for the geometry of the section and for 

the boundary conditions).

 In order to decrease the size of calculation, we model only ½ of the 

section.

The section of each modelled "fiber" is reproduced on the other side of 

the axis of symmetry.
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Symmetries
REALSYM: examples

REALSYM

REALSYM
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Symmetries
REALSYM: examples

REALSYM

REALSYM REALSYM
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Symmetries
SYMVOID

REALSYM

REALSYM

&

SYMVOID

(for calculation of the view

factors in the cavity)
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1) Free water – the evaporation is taken into account, 

but not the migration.

2) Perfect conductive contact between adjacents elements.

3) Fixed geometry (spalling! Can be taken into account, 

but not predicted, see advanced SAFIR course).

4) Isotropic materials :

No influence of cracking in concrete)

Note: timber is orthotropic.
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5) Consequence of linear elements: possible skin effects

(spatial oscillations)

A wall (uniaxial heat flow)

T

Exact solution

20°C
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T

Exact solution

One finite element

F.E solution

Cooling ?!?!?
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T

Exact solution

2 finite elements

F.E solution
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T

Exact solution

3 finite elements

F.E solution
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Example: a crude mesh in a prestressed section

23 mm

22 mm
24 mm
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T = 60’’ T = 120’’

T = 180’’ T = 240’’

T = 300’’ T = 360’’
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Solution: 

The mesh must not be too crude

in the zones 

in the direction 

of non linear temperature gradients.
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6) Concave elements are not acceptable.

If one is created by GID => cut it into 2 triangles

=>
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Example of a very simple discretization

¼ of a 30 x 30 cm² reinforced concrete section
64



The transient temperature distribution is evaluated.

Here under a natural fire (peak temperature after 3600 sec).
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Concrete Filled Steel Section

(courtesy N.R.C. Ottawa) 66



Prestressed concrete section
67



TT prestressed beam
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Steel H section in a steel tube filled with concrete
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Composite steel-concrete columns (1/2)

Courtesy: Technum
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Radiation in the cavities is taken into account
Concrete hollow core slab 72
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T.G.V. railway station in Liege (courtesy Bureau Greisch).

Main steel beam with concrete slab.
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Old floor system; steel I beams and precast voussoirs

Courtesy: Lenz Weber, Frankfurt 75



Window frame (courtesy: Permasteelisa)
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Composite beam partly heated

Steel column

through a concrete

slab

3D examples
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Composite steel-concrete joint

Discretisation 78



Composite steel-concrete joint

Temperatures on the surface 79



Composite steel-concrete joint
Temperatures on the steel elements (concrete is transparent)80



Project Team EN 1994-1-2 (Eurocode 4)

Steel stud on a thick plate (axi-symetric problem) 81



Concrete beam (courtesy Halfkann & Kirchner)

Transmission of the shear force around the holes 82



Thank you

Jean-Marc Franssen & Thomas Gernay

For any further information please contact:

safir@uliege.be
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